Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru0 | Structured version Visualization version GIF version |
Description: The FOL part of Russell's paradox ru 3401 (see also bj-ru1 32125, bj-ru 32126). Use of elequ1 1984, bj-elequ12 31855, bj-spvv 31910 (instead of eleq1 2676, eleq12d 2682, spv 2248 as in ru 3401) permits to remove dependency on ax-10 2006, ax-11 2021, ax-12 2034, ax-13 2234, ax-ext 2590, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru0 | ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 374 | . 2 ⊢ ¬ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦) | |
2 | elequ1 1984 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
3 | bj-elequ12 31855 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
4 | 3 | anidms 675 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
5 | 4 | notbid 307 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
6 | 2, 5 | bibi12d 334 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦))) |
7 | 6 | bj-spvv 31910 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) → (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦)) |
8 | 1, 7 | mto 187 | 1 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 |
This theorem is referenced by: bj-ru1 32125 |
Copyright terms: Public domain | W3C validator |