Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru0 Structured version   Visualization version   GIF version

Theorem bj-ru0 32124
Description: The FOL part of Russell's paradox ru 3401 (see also bj-ru1 32125, bj-ru 32126). Use of elequ1 1984, bj-elequ12 31855, bj-spvv 31910 (instead of eleq1 2676, eleq12d 2682, spv 2248 as in ru 3401) permits to remove dependency on ax-10 2006, ax-11 2021, ax-12 2034, ax-13 2234, ax-ext 2590, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru0 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-ru0
StepHypRef Expression
1 pm5.19 374 . 2 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 elequ1 1984 . . . 4 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 bj-elequ12 31855 . . . . . 6 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
43anidms 675 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
54notbid 307 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
62, 5bibi12d 334 . . 3 (𝑥 = 𝑦 → ((𝑥𝑦 ↔ ¬ 𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
76bj-spvv 31910 . 2 (∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
81, 7mto 187 1 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696
This theorem is referenced by:  bj-ru1  32125
  Copyright terms: Public domain W3C validator