Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-chvarv Structured version   Visualization version   GIF version

Theorem bj-chvarv 31912
 Description: Version of chvar 2250 with a dv condition, which does not require ax-13 2234. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-chvarv.nf 𝑥𝜓
bj-chvarv.1 (𝑥 = 𝑦 → (𝜑𝜓))
bj-chvarv.2 𝜑
Assertion
Ref Expression
bj-chvarv 𝜓
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem bj-chvarv
StepHypRef Expression
1 bj-chvarv.nf . . 3 𝑥𝜓
2 bj-chvarv.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 218 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
41, 3spimv1 2101 . 2 (∀𝑥𝜑𝜓)
5 bj-chvarv.2 . 2 𝜑
64, 5mpg 1715 1 𝜓
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  Ⅎwnf 1699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nf 1701 This theorem is referenced by:  bj-axrep2  31977  bj-axrep3  31978
 Copyright terms: Public domain W3C validator