Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axrep3 Structured version   Visualization version   GIF version

Theorem bj-axrep3 31978
Description: Remove dependency on ax-13 2234 from axrep3 4702. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axrep3 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bj-axrep3
StepHypRef Expression
1 nfe1 2014 . . . 4 𝑦𝑦𝑧(𝜑𝑧 = 𝑦)
2 nfv 1830 . . . . . 6 𝑦 𝑧𝑥
3 nfv 1830 . . . . . . . 8 𝑦 𝑥𝑤
4 nfa1 2015 . . . . . . . 8 𝑦𝑦𝜑
53, 4nfan 1816 . . . . . . 7 𝑦(𝑥𝑤 ∧ ∀𝑦𝜑)
65nfex 2140 . . . . . 6 𝑦𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)
72, 6nfbi 1821 . . . . 5 𝑦(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
87nfal 2139 . . . 4 𝑦𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
91, 8nfim 1813 . . 3 𝑦(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
109nfex 2140 . 2 𝑦𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
11 elequ2 1991 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
1211anbi1d 737 . . . . . . 7 (𝑦 = 𝑤 → ((𝑥𝑦 ∧ ∀𝑦𝜑) ↔ (𝑥𝑤 ∧ ∀𝑦𝜑)))
1312exbidv 1837 . . . . . 6 (𝑦 = 𝑤 → (∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
1413bibi2d 331 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))))
1514albidv 1836 . . . 4 (𝑦 = 𝑤 → (∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))))
1615imbi2d 329 . . 3 (𝑦 = 𝑤 → ((∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))))
1716exbidv 1837 . 2 (𝑦 = 𝑤 → (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))))
18 bj-axrep2 31977 . 2 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)))
1910, 17, 18bj-chvarv 31912 1 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-rep 4699
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701
This theorem is referenced by:  bj-axrep4  31979
  Copyright terms: Public domain W3C validator