MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11vOLD Structured version   Visualization version   GIF version

Theorem axc11vOLD 2126
Description: Obsolete proof of axc11v 2123 as of 11-Oct-2021. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc11vOLD (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc11vOLD
StepHypRef Expression
1 aevlem 1968 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
2 axc11rv 2124 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
31, 2syl 17 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator