 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11v Structured version   Visualization version   GIF version

Theorem axc11v 2123
 Description: Version of axc11 2302 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 1922 }, from ax12v 2035 (contrary to axc11 2302 which seems to require the full ax-12 2034 and ax-13 2234). (Contributed by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
Assertion
Ref Expression
axc11v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc11v
StepHypRef Expression
1 axc16g 2119 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑦𝜑))
21spsd 2045 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator