Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11nlemALT Structured version   Visualization version   GIF version

Theorem axc11nlemALT 2294
 Description: Alternate version of axc11nlemOLD2 1975 used in an older proof. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc11nlemALT (∀𝑥 𝑥 = 𝑤 → ∀𝑦 𝑦 = 𝑥)
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤

Proof of Theorem axc11nlemALT
StepHypRef Expression
1 cbvaev 1966 . . 3 (∀𝑥 𝑥 = 𝑤 → ∀𝑦 𝑦 = 𝑤)
2 equequ2 1940 . . . . 5 (𝑥 = 𝑤 → (𝑦 = 𝑥𝑦 = 𝑤))
32biimprd 237 . . . 4 (𝑥 = 𝑤 → (𝑦 = 𝑤𝑦 = 𝑥))
43al2imi 1733 . . 3 (∀𝑦 𝑥 = 𝑤 → (∀𝑦 𝑦 = 𝑤 → ∀𝑦 𝑦 = 𝑥))
51, 4syl5com 31 . 2 (∀𝑥 𝑥 = 𝑤 → (∀𝑦 𝑥 = 𝑤 → ∀𝑦 𝑦 = 𝑥))
6 dveeq1 2288 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑤 → ∀𝑦 𝑥 = 𝑤))
76spsd 2045 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑥 𝑥 = 𝑤 → ∀𝑦 𝑥 = 𝑤))
87com12 32 . . 3 (∀𝑥 𝑥 = 𝑤 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑤))
98con1d 138 . 2 (∀𝑥 𝑥 = 𝑤 → (¬ ∀𝑦 𝑥 = 𝑤 → ∀𝑦 𝑦 = 𝑥))
105, 9pm2.61d 169 1 (∀𝑥 𝑥 = 𝑤 → ∀𝑦 𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by:  axc11nALT  2298  aevlemALTOLD  2308
 Copyright terms: Public domain W3C validator