Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aevlemALTOLD Structured version   Visualization version   GIF version

Theorem aevlemALTOLD 2308
 Description: Older alternate version of aevlem 1968. Obsolete as of 30-Mar-2021. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
aevlemALTOLD (∀𝑧 𝑧 = 𝑤 → ∀𝑦 𝑦 = 𝑥)
Distinct variable group:   𝑧,𝑤

Proof of Theorem aevlemALTOLD
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cbvaev 1966 . 2 (∀𝑧 𝑧 = 𝑤 → ∀𝑣 𝑣 = 𝑤)
2 axc11nlemALT 2294 . 2 (∀𝑣 𝑣 = 𝑤 → ∀𝑧 𝑧 = 𝑣)
3 cbvaev 1966 . 2 (∀𝑧 𝑧 = 𝑣 → ∀𝑥 𝑥 = 𝑣)
4 axc11nlemALT 2294 . 2 (∀𝑥 𝑥 = 𝑣 → ∀𝑦 𝑦 = 𝑥)
51, 2, 3, 44syl 19 1 (∀𝑧 𝑧 = 𝑤 → ∀𝑦 𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator