Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 2858
 Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 2851 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 2850 1 (𝜑𝐶𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ≠ wne 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-cleq 2603  df-ne 2782 This theorem is referenced by:  subrgnzr  19089  clmopfne  22704  dchrisum0re  25002  cdlemg9a  34938  cdlemg11aq  34944  cdlemg12b  34950  cdlemg12  34956  cdlemg13  34958  cdlemg19  34990  cdlemk3  35139  cdlemk12  35156  cdlemk12u  35178  lclkrlem2g  35820  mapdncol  35977  mapdpglem29  36007  hdmaprnlem1N  36159  hdmap14lem9  36186  pellex  36417
 Copyright terms: Public domain W3C validator