Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrd Structured version   Visualization version   GIF version

Theorem neeqtrd 2851
 Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrd.1 (𝜑𝐴𝐵)
neeqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
neeqtrd (𝜑𝐴𝐶)

Proof of Theorem neeqtrd
StepHypRef Expression
1 neeqtrd.1 . 2 (𝜑𝐴𝐵)
2 neeqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32neeq2d 2842 . 2 (𝜑 → (𝐴𝐵𝐴𝐶))
41, 3mpbid 221 1 (𝜑𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ≠ wne 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-cleq 2603  df-ne 2782 This theorem is referenced by:  neeqtrrd  2856  3netr3d  2858  xaddass2  11952  xov1plusxeqvd  12189  issubdrg  18628  ply1scln0  19482  qsssubdrg  19624  alexsublem  21658  cphsubrglem  22785  cphreccllem  22786  mdegldg  23630  tglinethru  25331  footex  25413  eupath2lem3  26506  poimirlem26  32605  lkrpssN  33468  lnatexN  34083  lhpexle2lem  34313  lhpexle3lem  34315  cdlemg47  35042  cdlemk54  35264  tendoinvcl  35411  lcdlkreqN  35929  mapdh8ab  36084  jm2.26lem3  36586  stoweidlem36  38929
 Copyright terms: Public domain W3C validator