Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.40 | Structured version Visualization version GIF version |
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
19.40 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1783 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | |
2 | exsimpr 1784 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) | |
3 | 1, 2 | jca 553 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 |
This theorem is referenced by: 19.40-2 1803 19.40b 1804 19.40bOLD 1805 19.41v 1901 19.41 2090 exdistrf 2321 uniin 4393 copsexg 4882 dmin 5254 imadif 5887 bj-19.41al 31826 |
Copyright terms: Public domain | W3C validator |