MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.40 Structured version   Unicode version

Theorem 19.40 1651
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
19.40  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1649 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
2 exsimpr 1650 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ps )
31, 2jca 532 1  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   E.wex 1591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1592
This theorem is referenced by:  19.40-2  1669  19.41  1915  exdistrf  2041  uniin  4258  copsexg  4725  copsexgOLD  4726  dmin  5201  imadif  5654  bj-19.40b  33183
  Copyright terms: Public domain W3C validator