Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.28OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of 19.28 2083 as of 6-Oct-2021. (Contributed by NM, 1-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.28OLD.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.28OLD | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1786 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 19.28OLD.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | 19.3OLD 2190 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
4 | 3 | anbi1i 727 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
5 | 1, 4 | bitri 263 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∀wal 1473 ℲwnfOLD 1700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-nfOLD 1712 |
This theorem is referenced by: nfan1OLD 2224 |
Copyright terms: Public domain | W3C validator |