Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3OLD Structured version   Visualization version   GIF version

Theorem 19.3OLD 2190
 Description: Obsolete proof of 19.3 2057 as of 6-Oct-2021. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.3OLD.1 𝑥𝜑
Assertion
Ref Expression
19.3OLD (∀𝑥𝜑𝜑)

Proof of Theorem 19.3OLD
StepHypRef Expression
1 sp 2041 . 2 (∀𝑥𝜑𝜑)
2 19.3OLD.1 . . 3 𝑥𝜑
32nfriOLD 2177 . 2 (𝜑 → ∀𝑥𝜑)
41, 3impbii 198 1 (∀𝑥𝜑𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  ∀wal 1473  ℲwnfOLD 1700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712 This theorem is referenced by:  19.27OLD  2222  19.28OLD  2223
 Copyright terms: Public domain W3C validator