Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21t-1OLD Structured version   Visualization version   GIF version

Theorem 19.21t-1OLD 2200
 Description: One direction of the bi-conditional in 19.21t 2061. Unlike the reverse implication, it does not depend on ax-10 2006. Obsolete as of 6-Oct-2021 (Contributed by Wolf Lammen, 4-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
19.21t-1OLD (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))

Proof of Theorem 19.21t-1OLD
StepHypRef Expression
1 nfrOLD 2176 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
2 alim 1729 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
31, 2syl9 75 1 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473  ℲwnfOLD 1700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712 This theorem is referenced by:  19.21tOLD  2201  stdpc5OLDOLD  2205
 Copyright terms: Public domain W3C validator