ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmid GIF version

Theorem reg3exmid 4304
Description: If any inhabited set satisfying df-wetr 4071 for E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmid.1 (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
Assertion
Ref Expression
reg3exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem reg3exmid
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2040 . . 3 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
21regexmidlemm 4257 . 2 𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
31reg3exmidlemwe 4303 . . 3 E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
4 pp0ex 3940 . . . . 5 {∅, {∅}} ∈ V
54rabex 3901 . . . 4 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∈ V
6 weeq2 4094 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ( E We 𝑧 ↔ E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
7 eleq2 2101 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (𝑤𝑧𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
87exbidv 1706 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
96, 8anbi12d 442 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) ↔ ( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))})))
10 raleq 2505 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∀𝑦𝑧 𝑥𝑦 ↔ ∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
1110rexeqbi1dv 2514 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
129, 11imbi12d 223 . . . 4 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ((( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)))
13 reg3exmid.1 . . . 4 (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
145, 12, 13vtocl 2608 . . 3 (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
153, 14mpan 400 . 2 (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
161reg2exmidlema 4259 . 2 (∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦 → (𝜑 ∨ ¬ 𝜑))
172, 15, 16mp2b 8 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wo 629   = wceq 1243  wex 1381  wcel 1393  wral 2306  wrex 2307  {crab 2310  wss 2917  c0 3224  {csn 3375  {cpr 3376   E cep 4024   We wwe 4067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-eprel 4026  df-frfor 4068  df-frind 4069  df-wetr 4071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator