ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nnnn GIF version

Theorem peano5nnnn 6966
Description: Peano's inductive postulate. This is a counterpart to peano5nni 7917 designed for real number axioms which involve natural numbers (notably, axcaucvg 6974). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
peano5nnnn ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem peano5nnnn
StepHypRef Expression
1 oveq1 5519 . . . 4 (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1))
21eleq1d 2106 . . 3 (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑧 + 1) ∈ 𝐴))
32cbvralv 2533 . 2 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴)
4 ax1re 6938 . . . . 5 1 ∈ ℝ
5 elin 3126 . . . . . 6 (1 ∈ (𝐴 ∩ ℝ) ↔ (1 ∈ 𝐴 ∧ 1 ∈ ℝ))
65biimpri 124 . . . . 5 ((1 ∈ 𝐴 ∧ 1 ∈ ℝ) → 1 ∈ (𝐴 ∩ ℝ))
74, 6mpan2 401 . . . 4 (1 ∈ 𝐴 → 1 ∈ (𝐴 ∩ ℝ))
8 inss1 3157 . . . . . 6 (𝐴 ∩ ℝ) ⊆ 𝐴
9 ssralv 3004 . . . . . 6 ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴))
108, 9ax-mp 7 . . . . 5 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴)
11 inss2 3158 . . . . . . . 8 (𝐴 ∩ ℝ) ⊆ ℝ
1211sseli 2941 . . . . . . 7 (𝑦 ∈ (𝐴 ∩ ℝ) → 𝑦 ∈ ℝ)
13 axaddrcl 6941 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
144, 13mpan2 401 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
15 elin 3126 . . . . . . . 8 ((𝑦 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑦 + 1) ∈ 𝐴 ∧ (𝑦 + 1) ∈ ℝ))
1615simplbi2com 1333 . . . . . . 7 ((𝑦 + 1) ∈ ℝ → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
1712, 14, 163syl 17 . . . . . 6 (𝑦 ∈ (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
1817ralimia 2382 . . . . 5 (∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))
1910, 18syl 14 . . . 4 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))
20 axcnex 6935 . . . . . . 7 ℂ ∈ V
21 axresscn 6936 . . . . . . 7 ℝ ⊆ ℂ
2220, 21ssexi 3895 . . . . . 6 ℝ ∈ V
2322inex2 3892 . . . . 5 (𝐴 ∩ ℝ) ∈ V
24 eleq2 2101 . . . . . . . 8 (𝑥 = (𝐴 ∩ ℝ) → (1 ∈ 𝑥 ↔ 1 ∈ (𝐴 ∩ ℝ)))
25 eleq2 2101 . . . . . . . . 9 (𝑥 = (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
2625raleqbi1dv 2513 . . . . . . . 8 (𝑥 = (𝐴 ∩ ℝ) → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
2724, 26anbi12d 442 . . . . . . 7 (𝑥 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))))
2827elabg 2688 . . . . . 6 ((𝐴 ∩ ℝ) ∈ V → ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))))
29 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
30 intss1 3630 . . . . . . 7 ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ (𝐴 ∩ ℝ))
3129, 30syl5eqss 2989 . . . . . 6 ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → 𝑁 ⊆ (𝐴 ∩ ℝ))
3228, 31syl6bir 153 . . . . 5 ((𝐴 ∩ ℝ) ∈ V → ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ)))
3323, 32ax-mp 7 . . . 4 ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ))
347, 19, 33syl2an 273 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ (𝐴 ∩ ℝ))
3534, 8syl6ss 2957 . 2 ((1 ∈ 𝐴 ∧ ∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁𝐴)
363, 35sylan2br 272 1 ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  {cab 2026  wral 2306  Vcvv 2557  cin 2916  wss 2917   cint 3615  (class class class)co 5512  cc 6887  cr 6888  1c1 6890   + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-enr 6811  df-nr 6812  df-plr 6813  df-0r 6816  df-1r 6817  df-c 6895  df-1 6897  df-r 6899  df-add 6900
This theorem is referenced by:  nnindnn  6967
  Copyright terms: Public domain W3C validator