ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoselem GIF version

Theorem isoselem 5459
Description: Lemma for isose 5460. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isoselem (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isoselem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 4698 . . . . . . . . 9 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
21biimpi 113 . . . . . . . 8 (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
32r19.21bi 2407 . . . . . . 7 ((𝑅 Se 𝐴𝑧𝐴) → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
43expcom 109 . . . . . 6 (𝑧𝐴 → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
54adantl 262 . . . . 5 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
6 imaeq2 4664 . . . . . . . . . . 11 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → (𝐻𝑥) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))))
76eleq1d 2106 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝐻𝑥) ∈ V ↔ (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
87imbi2d 219 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝜑 → (𝐻𝑥) ∈ V) ↔ (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V)))
9 isofrlem.2 . . . . . . . . 9 (𝜑 → (𝐻𝑥) ∈ V)
108, 9vtoclg 2613 . . . . . . . 8 ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1110com12 27 . . . . . . 7 (𝜑 → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1211adantr 261 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
13 isofrlem.1 . . . . . . . 8 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
14 isoini 5457 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1513, 14sylan 267 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1615eleq1d 2106 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1712, 16sylibd 138 . . . . 5 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
185, 17syld 40 . . . 4 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1918ralrimdva 2399 . . 3 (𝜑 → (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
20 isof1o 5447 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
21 f1ofn 5127 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
22 sneq 3386 . . . . . . . . 9 (𝑦 = (𝐻𝑧) → {𝑦} = {(𝐻𝑧)})
2322imaeq2d 4668 . . . . . . . 8 (𝑦 = (𝐻𝑧) → (𝑆 “ {𝑦}) = (𝑆 “ {(𝐻𝑧)}))
2423ineq2d 3138 . . . . . . 7 (𝑦 = (𝐻𝑧) → (𝐵 ∩ (𝑆 “ {𝑦})) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
2524eleq1d 2106 . . . . . 6 (𝑦 = (𝐻𝑧) → ((𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2625ralrn 5305 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2713, 20, 21, 264syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
28 f1ofo 5133 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
29 forn 5109 . . . . . 6 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
3013, 20, 28, 294syl 18 . . . . 5 (𝜑 → ran 𝐻 = 𝐵)
3130raleqdv 2511 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3227, 31bitr3d 179 . . 3 (𝜑 → (∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3319, 32sylibd 138 . 2 (𝜑 → (𝑅 Se 𝐴 → ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
34 dfse2 4698 . 2 (𝑆 Se 𝐵 ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V)
3533, 34syl6ibr 151 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2306  Vcvv 2557  cin 2916  {csn 3375   Se wse 4066  ccnv 4344  ran crn 4346  cima 4348   Fn wfn 4897  ontowfo 4900  1-1-ontowf1o 4901  cfv 4902   Isom wiso 4903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-se 4070  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-isom 4911
This theorem is referenced by:  isose  5460
  Copyright terms: Public domain W3C validator