ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmin GIF version

Theorem fndmin 5274
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmin ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5219 . . . . . 6 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 df-mpt 3820 . . . . . 6 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
31, 2syl6eq 2088 . . . . 5 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
4 dffn5im 5219 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
5 df-mpt 3820 . . . . . 6 (𝑥𝐴 ↦ (𝐺𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}
64, 5syl6eq 2088 . . . . 5 (𝐺 Fn 𝐴𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))})
73, 6ineqan12d 3140 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}))
8 inopab 4468 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))}
97, 8syl6eq 2088 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))})
109dmeqd 4537 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))})
11 anandi 524 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))))
1211exbii 1496 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))))
13 19.42v 1786 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))))
1412, 13bitr3i 175 . . . . . 6 (∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))))
15 funfvex 5192 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
16 eqeq1 2046 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 = (𝐺𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
1716ceqsexgv 2673 . . . . . . . . 9 ((𝐹𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
1815, 17syl 14 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
1918funfni 4999 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
2019pm5.32da 425 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))))
2114, 20syl5bb 181 . . . . 5 (𝐹 Fn 𝐴 → (∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))))
2221abbidv 2155 . . . 4 (𝐹 Fn 𝐴 → {𝑥 ∣ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))})
23 dmopab 4546 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))}
24 df-rab 2315 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))}
2522, 23, 243eqtr4g 2097 . . 3 (𝐹 Fn 𝐴 → dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
2625adantr 261 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
2710, 26eqtrd 2072 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  {cab 2026  {crab 2310  Vcvv 2557  cin 2916  {copab 3817  cmpt 3818  dom cdm 4345  Fun wfun 4896   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  fneqeql  5275
  Copyright terms: Public domain W3C validator