Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdop GIF version

Theorem bdop 9995
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdop BOUNDED𝑥, 𝑦

Proof of Theorem bdop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdvsn 9994 . . . 4 BOUNDED 𝑧 = {𝑥}
2 bdcpr 9991 . . . . . . 7 BOUNDED {𝑥, 𝑦}
32bdss 9984 . . . . . 6 BOUNDED 𝑧 ⊆ {𝑥, 𝑦}
4 ax-bdel 9941 . . . . . . . 8 BOUNDED 𝑥𝑧
5 ax-bdel 9941 . . . . . . . 8 BOUNDED 𝑦𝑧
64, 5ax-bdan 9935 . . . . . . 7 BOUNDED (𝑥𝑧𝑦𝑧)
7 vex 2560 . . . . . . . . . . 11 𝑥 ∈ V
87prid1 3476 . . . . . . . . . 10 𝑥 ∈ {𝑥, 𝑦}
9 ssel 2939 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥𝑧))
108, 9mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑥𝑧)
11 vex 2560 . . . . . . . . . . 11 𝑦 ∈ V
1211prid2 3477 . . . . . . . . . 10 𝑦 ∈ {𝑥, 𝑦}
13 ssel 2939 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦𝑧))
1412, 13mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑦𝑧)
1510, 14jca 290 . . . . . . . 8 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥𝑧𝑦𝑧))
16 prssi 3522 . . . . . . . 8 ((𝑥𝑧𝑦𝑧) → {𝑥, 𝑦} ⊆ 𝑧)
1715, 16impbii 117 . . . . . . 7 ({𝑥, 𝑦} ⊆ 𝑧 ↔ (𝑥𝑧𝑦𝑧))
186, 17bd0r 9945 . . . . . 6 BOUNDED {𝑥, 𝑦} ⊆ 𝑧
193, 18ax-bdan 9935 . . . . 5 BOUNDED (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧)
20 eqss 2960 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧))
2119, 20bd0r 9945 . . . 4 BOUNDED 𝑧 = {𝑥, 𝑦}
221, 21ax-bdor 9936 . . 3 BOUNDED (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦})
23 vex 2560 . . . 4 𝑧 ∈ V
2423, 7, 11elop 3968 . . 3 (𝑧 ∈ ⟨𝑥, 𝑦⟩ ↔ (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦}))
2522, 24bd0r 9945 . 2 BOUNDED 𝑧 ∈ ⟨𝑥, 𝑦
2625bdelir 9967 1 BOUNDED𝑥, 𝑦
Colors of variables: wff set class
Syntax hints:  wa 97  wo 629   = wceq 1243  wcel 1393  wss 2917  {csn 3375  {cpr 3376  cop 3378  BOUNDED wbdc 9960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bd0 9933  ax-bdan 9935  ax-bdor 9936  ax-bdal 9938  ax-bdeq 9940  ax-bdel 9941  ax-bdsb 9942
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-bdc 9961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator