ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle GIF version

Theorem absle 9685
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Proof of Theorem absle
StepHypRef Expression
1 simpll 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ)
21renegcld 7378 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ)
31recnd 7054 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ)
4 abscl 9649 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
53, 4syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ)
6 simplr 482 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ)
7 leabs 9672 . . . . . . 7 (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
82, 7syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴))
9 absneg 9648 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
103, 9syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴))
118, 10breqtrd 3788 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴))
12 simpr 103 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)
132, 5, 6, 11, 12letrd 7138 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴𝐵)
14 leabs 9672 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
1514ad2antrr 457 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴))
161, 5, 6, 15, 12letrd 7138 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴𝐵)
1713, 16jca 290 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴𝐵𝐴𝐵))
18 simpll 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴 ∈ ℝ)
19 simplr 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐵 ∈ ℝ)
2018recnd 7054 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴 ∈ ℂ)
2120, 4syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (abs‘𝐴) ∈ ℝ)
22 axltwlin 7087 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴𝐴 < (abs‘𝐴))))
2319, 21, 18, 22syl3anc 1135 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴𝐴 < (abs‘𝐴))))
24 simprr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴𝐵)
2518, 19lenltd 7134 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2624, 25mpbid 135 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ¬ 𝐵 < 𝐴)
27 pm2.53 641 . . . . . . . . 9 ((𝐵 < 𝐴𝐴 < (abs‘𝐴)) → (¬ 𝐵 < 𝐴𝐴 < (abs‘𝐴)))
2823, 26, 27syl6ci 1334 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → 𝐴 < (abs‘𝐴)))
29 simpl 102 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℝ)
3029recnd 7054 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℂ)
3130, 9syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = (abs‘𝐴))
3229renegcld 7378 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → -𝐴 ∈ ℝ)
33 0red 7028 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ∈ ℝ)
34 ltabs 9683 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
3529, 33, 34ltled 7135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ≤ 0)
3629le0neg1d 7509 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
3735, 36mpbid 135 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ≤ -𝐴)
38 absid 9669 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (abs‘-𝐴) = -𝐴)
3932, 37, 38syl2anc 391 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = -𝐴)
4031, 39eqtr3d 2074 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) = -𝐴)
4118, 28, 40syl6an 1323 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) = -𝐴))
42 simprl 483 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → -𝐴𝐵)
43 breq1 3767 . . . . . . . 8 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴𝐵))
4442, 43syl5ibrcom 146 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ((abs‘𝐴) = -𝐴 → (abs‘𝐴) ≤ 𝐵))
4541, 44syld 40 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) ≤ 𝐵))
4621, 19lenltd 7134 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ¬ 𝐵 < (abs‘𝐴)))
4745, 46sylibd 138 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → ¬ 𝐵 < (abs‘𝐴)))
4847pm2.01d 548 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ¬ 𝐵 < (abs‘𝐴))
4948, 46mpbird 156 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (abs‘𝐴) ≤ 𝐵)
5017, 49impbida 528 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴𝐵𝐴𝐵)))
51 lenegcon1 7461 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
5251anbi1d 438 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
5350, 52bitrd 177 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629   = wceq 1243  wcel 1393   class class class wbr 3764  cfv 4902  cc 6887  cr 6888  0cc0 6889   < clt 7060  cle 7061  -cneg 7183  abscabs 9595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597
This theorem is referenced by:  absdifle  9689  lenegsq  9691  abs2difabs  9704  abslei  9735  absled  9771
  Copyright terms: Public domain W3C validator