ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlem1 Unicode version

Theorem regexmidlem1 4258
Description: Lemma for regexmid 4260. If  A has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
regexmidlem1  |-  ( E. y ( y  e.  A  /\  A. z
( z  e.  y  ->  -.  z  e.  A ) )  -> 
( ph  \/  -.  ph ) )
Distinct variable groups:    y, A, z    ph, x, y
Allowed substitution hints:    ph( z)    A( x)

Proof of Theorem regexmidlem1
StepHypRef Expression
1 eqeq1 2046 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  { (/) }  <-> 
y  =  { (/) } ) )
2 eqeq1 2046 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
32anbi1d 438 . . . . . . 7  |-  ( x  =  y  ->  (
( x  =  (/)  /\ 
ph )  <->  ( y  =  (/)  /\  ph )
) )
41, 3orbi12d 707 . . . . . 6  |-  ( x  =  y  ->  (
( x  =  { (/)
}  \/  ( x  =  (/)  /\  ph )
)  <->  ( y  =  { (/) }  \/  (
y  =  (/)  /\  ph ) ) ) )
5 regexmidlemm.a . . . . . 6  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
64, 5elrab2 2700 . . . . 5  |-  ( y  e.  A  <->  ( y  e.  { (/) ,  { (/) } }  /\  ( y  =  { (/) }  \/  ( y  =  (/)  /\ 
ph ) ) ) )
76simprbi 260 . . . 4  |-  ( y  e.  A  ->  (
y  =  { (/) }  \/  ( y  =  (/)  /\  ph ) ) )
8 0ex 3884 . . . . . . . . 9  |-  (/)  e.  _V
98snid 3402 . . . . . . . 8  |-  (/)  e.  { (/)
}
10 eleq2 2101 . . . . . . . 8  |-  ( y  =  { (/) }  ->  (
(/)  e.  y  <->  (/)  e.  { (/)
} ) )
119, 10mpbiri 157 . . . . . . 7  |-  ( y  =  { (/) }  ->  (/)  e.  y )
12 eleq1 2100 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( z  e.  y  <->  (/)  e.  y ) )
13 eleq1 2100 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( z  e.  A  <->  (/)  e.  A
) )
1413notbid 592 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( -.  z  e.  A  <->  -.  (/)  e.  A
) )
1512, 14imbi12d 223 . . . . . . . 8  |-  ( z  =  (/)  ->  ( ( z  e.  y  ->  -.  z  e.  A
)  <->  ( (/)  e.  y  ->  -.  (/)  e.  A
) ) )
168, 15spcv 2646 . . . . . . 7  |-  ( A. z ( z  e.  y  ->  -.  z  e.  A )  ->  ( (/) 
e.  y  ->  -.  (/) 
e.  A ) )
1711, 16syl5com 26 . . . . . 6  |-  ( y  =  { (/) }  ->  ( A. z ( z  e.  y  ->  -.  z  e.  A )  ->  -.  (/)  e.  A ) )
188prid1 3476 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  { (/) } }
19 eqeq1 2046 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x  =  { (/) }  <->  (/)  =  { (/)
} ) )
20 eqeq1 2046 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2120anbi1d 438 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( ( x  =  (/)  /\  ph ) 
<->  ( (/)  =  (/)  /\  ph ) ) )
2219, 21orbi12d 707 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) )  <-> 
( (/)  =  { (/) }  \/  ( (/)  =  (/)  /\ 
ph ) ) ) )
2322, 5elrab2 2700 . . . . . . . . . 10  |-  ( (/)  e.  A  <->  ( (/)  e.  { (/)
,  { (/) } }  /\  ( (/)  =  { (/)
}  \/  ( (/)  =  (/)  /\  ph )
) ) )
2418, 23mpbiran 847 . . . . . . . . 9  |-  ( (/)  e.  A  <->  ( (/)  =  { (/)
}  \/  ( (/)  =  (/)  /\  ph )
) )
25 pm2.46 658 . . . . . . . . 9  |-  ( -.  ( (/)  =  { (/)
}  \/  ( (/)  =  (/)  /\  ph )
)  ->  -.  ( (/)  =  (/)  /\  ph )
)
2624, 25sylnbi 603 . . . . . . . 8  |-  ( -.  (/)  e.  A  ->  -.  ( (/)  =  (/)  /\  ph ) )
27 eqid 2040 . . . . . . . . 9  |-  (/)  =  (/)
2827biantrur 287 . . . . . . . 8  |-  ( ph  <->  (
(/)  =  (/)  /\  ph ) )
2926, 28sylnibr 602 . . . . . . 7  |-  ( -.  (/)  e.  A  ->  -.  ph )
3029olcd 653 . . . . . 6  |-  ( -.  (/)  e.  A  ->  ( ph  \/  -.  ph )
)
3117, 30syl6 29 . . . . 5  |-  ( y  =  { (/) }  ->  ( A. z ( z  e.  y  ->  -.  z  e.  A )  ->  ( ph  \/  -.  ph ) ) )
32 orc 633 . . . . . . 7  |-  ( ph  ->  ( ph  \/  -.  ph ) )
3332adantl 262 . . . . . 6  |-  ( ( y  =  (/)  /\  ph )  ->  ( ph  \/  -.  ph ) )
3433a1d 22 . . . . 5  |-  ( ( y  =  (/)  /\  ph )  ->  ( A. z
( z  e.  y  ->  -.  z  e.  A )  ->  ( ph  \/  -.  ph )
) )
3531, 34jaoi 636 . . . 4  |-  ( ( y  =  { (/) }  \/  ( y  =  (/)  /\  ph ) )  ->  ( A. z
( z  e.  y  ->  -.  z  e.  A )  ->  ( ph  \/  -.  ph )
) )
367, 35syl 14 . . 3  |-  ( y  e.  A  ->  ( A. z ( z  e.  y  ->  -.  z  e.  A )  ->  ( ph  \/  -.  ph )
) )
3736imp 115 . 2  |-  ( ( y  e.  A  /\  A. z ( z  e.  y  ->  -.  z  e.  A ) )  -> 
( ph  \/  -.  ph ) )
3837exlimiv 1489 1  |-  ( E. y ( y  e.  A  /\  A. z
( z  e.  y  ->  -.  z  e.  A ) )  -> 
( ph  \/  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   {crab 2310   (/)c0 3224   {csn 3375   {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-nul 3883
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-nul 3225  df-sn 3381  df-pr 3382
This theorem is referenced by:  regexmid  4260  nnregexmid  4342
  Copyright terms: Public domain W3C validator