ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfun Unicode version

Theorem qliftfun 6188
Description: The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
qliftfun.4  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
qliftfun  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Distinct variable groups:    y, A    x, B    x, y, ph    x, R, y    y, F    x, X, y    x, Y, y
Allowed substitution hints:    A( x)    B( y)    F( x)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6184 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
6 eceq1 6141 . . 3  |-  ( x  =  y  ->  [ x ] R  =  [
y ] R )
7 qliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  B )
81, 5, 2, 6, 7fliftfun 5436 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
93adantr 261 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  R  Er  X )
10 simpr 103 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  x R y )
119, 10ercl 6117 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  x  e.  X )
129, 10ercl2 6119 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  y  e.  X )
1311, 12jca 290 . . . . . . . . 9  |-  ( (
ph  /\  x R
y )  ->  (
x  e.  X  /\  y  e.  X )
)
1413ex 108 . . . . . . . 8  |-  ( ph  ->  ( x R y  ->  ( x  e.  X  /\  y  e.  X ) ) )
1514pm4.71rd 374 . . . . . . 7  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  x R y ) ) )
163adantr 261 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  Er  X )
17 simprl 483 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
1816, 17erth 6150 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <->  [ x ] R  =  [ y ] R
) )
1918pm5.32da 425 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  X  /\  y  e.  X )  /\  x R y )  <->  ( (
x  e.  X  /\  y  e.  X )  /\  [ x ] R  =  [ y ] R
) ) )
2015, 19bitrd 177 . . . . . 6  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
) ) )
2120imbi1d 220 . . . . 5  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
( x  e.  X  /\  y  e.  X
)  /\  [ x ] R  =  [
y ] R )  ->  A  =  B ) ) )
22 impexp 250 . . . . 5  |-  ( ( ( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
)  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) )
2321, 22syl6bb 185 . . . 4  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
24232albidv 1747 . . 3  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
25 r2al 2343 . . 3  |-  ( A. x  e.  X  A. y  e.  X  ( [ x ] R  =  [ y ] R  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X
)  ->  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
2624, 25syl6bbr 187 . 2  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
278, 26bitr4d 180 1  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557   <.cop 3378   class class class wbr 3764    |-> cmpt 3818   ran crn 4346   Fun wfun 4896    Er wer 6103   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-er 6106  df-ec 6108  df-qs 6112
This theorem is referenced by:  qliftfund  6189  qliftfuns  6190
  Copyright terms: Public domain W3C validator