ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucunielexmid Unicode version

Theorem ordsucunielexmid 4256
Description: The converse of sucunielr 4236 (where  B is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
ordsucunielexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
Assertion
Ref Expression
ordsucunielexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ordsucunielexmid
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4112 . . . . . . . 8  |-  ( b  e.  On  ->  Ord  b )
2 ordtr 4115 . . . . . . . 8  |-  ( Ord  b  ->  Tr  b
)
31, 2syl 14 . . . . . . 7  |-  ( b  e.  On  ->  Tr  b )
4 vex 2560 . . . . . . . 8  |-  b  e. 
_V
54unisuc 4150 . . . . . . 7  |-  ( Tr  b  <->  U. suc  b  =  b )
63, 5sylib 127 . . . . . 6  |-  ( b  e.  On  ->  U. suc  b  =  b )
76eleq2d 2107 . . . . 5  |-  ( b  e.  On  ->  (
a  e.  U. suc  b 
<->  a  e.  b ) )
87adantl 262 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  U. suc  b  <->  a  e.  b ) )
9 suceloni 4227 . . . . 5  |-  ( b  e.  On  ->  suc  b  e.  On )
10 ordsucunielexmid.1 . . . . . 6  |-  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
11 eleq1 2100 . . . . . . . 8  |-  ( x  =  a  ->  (
x  e.  U. y  <->  a  e.  U. y ) )
12 suceq 4139 . . . . . . . . 9  |-  ( x  =  a  ->  suc  x  =  suc  a )
1312eleq1d 2106 . . . . . . . 8  |-  ( x  =  a  ->  ( suc  x  e.  y  <->  suc  a  e.  y ) )
1411, 13imbi12d 223 . . . . . . 7  |-  ( x  =  a  ->  (
( x  e.  U. y  ->  suc  x  e.  y )  <->  ( a  e.  U. y  ->  suc  a  e.  y )
) )
15 unieq 3589 . . . . . . . . 9  |-  ( y  =  suc  b  ->  U. y  =  U. suc  b )
1615eleq2d 2107 . . . . . . . 8  |-  ( y  =  suc  b  -> 
( a  e.  U. y 
<->  a  e.  U. suc  b ) )
17 eleq2 2101 . . . . . . . 8  |-  ( y  =  suc  b  -> 
( suc  a  e.  y 
<->  suc  a  e.  suc  b ) )
1816, 17imbi12d 223 . . . . . . 7  |-  ( y  =  suc  b  -> 
( ( a  e. 
U. y  ->  suc  a  e.  y )  <->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) ) )
1914, 18rspc2va 2663 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
suc  b  e.  On )  /\  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
)  ->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) )
2010, 19mpan2 401 . . . . 5  |-  ( ( a  e.  On  /\  suc  b  e.  On )  ->  ( a  e. 
U. suc  b  ->  suc  a  e.  suc  b
) )
219, 20sylan2 270 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) )
228, 21sylbird 159 . . 3  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  b  ->  suc  a  e.  suc  b ) )
2322rgen2a 2375 . 2  |-  A. a  e.  On  A. b  e.  On  ( a  e.  b  ->  suc  a  e. 
suc  b )
2423onsucelsucexmid 4255 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    = wceq 1243    e. wcel 1393   A.wral 2306   U.cuni 3580   Tr wtr 3854   Ord word 4099   Oncon0 4100   suc csuc 4102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105  df-suc 4108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator