ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprl Unicode version

Theorem nqprl 6649
Description: Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by 
<P. (Contributed by Jim Kingdon, 8-Jul-2020.)
Assertion
Ref Expression
nqprl  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B ) )
Distinct variable group:    A, l, u
Allowed substitution hints:    B( u, l)

Proof of Theorem nqprl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 6573 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnmaxl 6586 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  E. x  e.  ( 1st `  B ) A 
<Q  x )
31, 2sylan 267 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  E. x  e.  ( 1st `  B ) A 
<Q  x )
4 elprnql 6579 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  ->  x  e.  Q. )
51, 4sylan 267 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  x  e.  ( 1st `  B ) )  ->  x  e.  Q. )
65ad2ant2r 478 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  Q. )
7 vex 2560 . . . . . . . . . . . 12  |-  x  e. 
_V
8 breq2 3768 . . . . . . . . . . . 12  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
97, 8elab 2687 . . . . . . . . . . 11  |-  ( x  e.  { u  |  A  <Q  u }  <->  A 
<Q  x )
109biimpri 124 . . . . . . . . . 10  |-  ( A 
<Q  x  ->  x  e. 
{ u  |  A  <Q  u } )
11 ltnqex 6647 . . . . . . . . . . . 12  |-  { l  |  l  <Q  A }  e.  _V
12 gtnqex 6648 . . . . . . . . . . . 12  |-  { u  |  A  <Q  u }  e.  _V
1311, 12op2nd 5774 . . . . . . . . . . 11  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
1413eleq2i 2104 . . . . . . . . . 10  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  e.  { u  |  A  <Q  u }
)
1510, 14sylibr 137 . . . . . . . . 9  |-  ( A 
<Q  x  ->  x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
1615ad2antll 460 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
17 simprl 483 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  ( 1st `  B ) )
18 19.8a 1482 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )  ->  E. x
( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) ) )
196, 16, 17, 18syl12anc 1133 . . . . . . 7  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) ) )
20 df-rex 2312 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) )  <->  E. x ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2119, 20sylibr 137 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )
22 elprnql 6579 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  A  e.  Q. )
231, 22sylan 267 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  A  e.  Q. )
24 simpl 102 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  B  e.  P. )
25 nqprlu 6645 . . . . . . . . 9  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
26 ltdfpr 6604 . . . . . . . . 9  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2725, 26sylan 267 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2823, 24, 27syl2anc 391 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  -> 
( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2928adantr 261 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
3021, 29mpbird 156 . . . . 5  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )
313, 30rexlimddv 2437 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B )
3231ex 108 . . 3  |-  ( B  e.  P.  ->  ( A  e.  ( 1st `  B )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
3332adantl 262 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
3427biimpa 280 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )
3514, 9bitri 173 . . . . . . . 8  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
3635biimpi 113 . . . . . . 7  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  <Q  x )
3736ad2antrl 459 . . . . . 6  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )  ->  A  <Q  x )
3837adantl 262 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  A  <Q  x
)
39 simpllr 486 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  B  e.  P. )
40 simprrr 492 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  x  e.  ( 1st `  B ) )
41 prcdnql 6582 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
421, 41sylan 267 . . . . . 6  |-  ( ( B  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
4339, 40, 42syl2anc 391 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  ( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
4438, 43mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  A  e.  ( 1st `  B ) )
4534, 44rexlimddv 2437 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  ->  A  e.  ( 1st `  B ) )
4645ex 108 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  ->  A  e.  ( 1st `  B ) ) )
4733, 46impbid 120 1  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   {cab 2026   E.wrex 2307   <.cop 3378   class class class wbr 3764   ` cfv 4902   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    <Q cltq 6383   P.cnp 6389    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  caucvgprlemcanl  6742  cauappcvgprlem1  6757  archrecpr  6762  caucvgprlem1  6777  caucvgprprlemml  6792  caucvgprprlemopl  6795
  Copyright terms: Public domain W3C validator