ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordex Unicode version

Theorem nnaordex 6100
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnaordex
Dummy variables  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2101 . . . . . 6  |-  ( b  =  B  ->  ( A  e.  b  <->  A  e.  B ) )
2 eqeq2 2049 . . . . . . . 8  |-  ( b  =  B  ->  (
( A  +o  x
)  =  b  <->  ( A  +o  x )  =  B ) )
32anbi2d 437 . . . . . . 7  |-  ( b  =  B  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
43rexbidv 2327 . . . . . 6  |-  ( b  =  B  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
51, 4imbi12d 223 . . . . 5  |-  ( b  =  B  ->  (
( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
65imbi2d 219 . . . 4  |-  ( b  =  B  ->  (
( A  e.  om  ->  ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) ) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) ) )
7 eleq2 2101 . . . . . 6  |-  ( b  =  (/)  ->  ( A  e.  b  <->  A  e.  (/) ) )
8 eqeq2 2049 . . . . . . . 8  |-  ( b  =  (/)  ->  ( ( A  +o  x )  =  b  <->  ( A  +o  x )  =  (/) ) )
98anbi2d 437 . . . . . . 7  |-  ( b  =  (/)  ->  ( (
(/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
109rexbidv 2327 . . . . . 6  |-  ( b  =  (/)  ->  ( E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
117, 10imbi12d 223 . . . . 5  |-  ( b  =  (/)  ->  ( ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) ) )
12 eleq2 2101 . . . . . 6  |-  ( b  =  y  ->  ( A  e.  b  <->  A  e.  y ) )
13 eqeq2 2049 . . . . . . . 8  |-  ( b  =  y  ->  (
( A  +o  x
)  =  b  <->  ( A  +o  x )  =  y ) )
1413anbi2d 437 . . . . . . 7  |-  ( b  =  y  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )
1514rexbidv 2327 . . . . . 6  |-  ( b  =  y  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )
1612, 15imbi12d 223 . . . . 5  |-  ( b  =  y  ->  (
( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) ) )
17 eleq2 2101 . . . . . 6  |-  ( b  =  suc  y  -> 
( A  e.  b  <-> 
A  e.  suc  y
) )
18 eqeq2 2049 . . . . . . . 8  |-  ( b  =  suc  y  -> 
( ( A  +o  x )  =  b  <-> 
( A  +o  x
)  =  suc  y
) )
1918anbi2d 437 . . . . . . 7  |-  ( b  =  suc  y  -> 
( ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
2019rexbidv 2327 . . . . . 6  |-  ( b  =  suc  y  -> 
( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
2117, 20imbi12d 223 . . . . 5  |-  ( b  =  suc  y  -> 
( ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e. 
suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) ) )
22 noel 3228 . . . . . . 7  |-  -.  A  e.  (/)
2322pm2.21i 575 . . . . . 6  |-  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) )
2423a1i 9 . . . . 5  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
25 elsuci 4140 . . . . . . 7  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
26 simpr 103 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  y ) ) )
27 peano2 4318 . . . . . . . . . . . . . . 15  |-  ( x  e.  om  ->  suc  x  e.  om )
2827ad2antlr 458 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  suc  x  e. 
om )
29 elelsuc 4146 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  x  ->  (/)  e.  suc  x )
3029a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  -> 
(/)  e.  suc  x ) )
31 nnasuc 6055 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
32 suceq 4139 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +o  x )  =  y  ->  suc  ( A  +o  x
)  =  suc  y
)
3331, 32sylan9eq 2092 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( A  +o  x
)  =  y )  ->  ( A  +o  suc  x )  =  suc  y )
3433ex 108 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  x )  =  y  ->  ( A  +o  suc  x )  =  suc  y ) )
3530, 34anim12d 318 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) ) )
3635imp 115 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) )
37 eleq2 2101 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  x  -> 
( (/)  e.  z  <->  (/)  e.  suc  x ) )
38 oveq2 5520 . . . . . . . . . . . . . . . . 17  |-  ( z  =  suc  x  -> 
( A  +o  z
)  =  ( A  +o  suc  x ) )
3938eqeq1d 2048 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  x  -> 
( ( A  +o  z )  =  suc  y 
<->  ( A  +o  suc  x )  =  suc  y ) )
4037, 39anbi12d 442 . . . . . . . . . . . . . . 15  |-  ( z  =  suc  x  -> 
( ( (/)  e.  z  /\  ( A  +o  z )  =  suc  y )  <->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) ) )
4140rspcev 2656 . . . . . . . . . . . . . 14  |-  ( ( suc  x  e.  om  /\  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) )
4228, 36, 41syl2anc 391 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z )  =  suc  y ) )
4342ex 108 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) ) )
4443rexlimdva 2433 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) ) )
45 eleq2 2101 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( (/) 
e.  z  <->  (/)  e.  x
) )
46 oveq2 5520 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( A  +o  z )  =  ( A  +o  x
) )
4746eqeq1d 2048 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( A  +o  z
)  =  suc  y  <->  ( A  +o  x )  =  suc  y ) )
4845, 47anbi12d 442 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
)  <->  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
4948cbvrexv 2534 . . . . . . . . . . 11  |-  ( E. z  e.  om  ( (/) 
e.  z  /\  ( A  +o  z )  =  suc  y )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
5044, 49syl6ib 150 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
5150ad2antlr 458 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
5226, 51syld 40 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
53 0lt1o 6023 . . . . . . . . . . . 12  |-  (/)  e.  1o
5453a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  A  =  y )  -> 
(/)  e.  1o )
55 nnon 4332 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  A  e.  On )
56 oa1suc 6047 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( A  +o  1o )  =  suc  A )
5755, 56syl 14 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  1o )  =  suc  A )
58 suceq 4139 . . . . . . . . . . . 12  |-  ( A  =  y  ->  suc  A  =  suc  y )
5957, 58sylan9eq 2092 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  A  =  y )  ->  ( A  +o  1o )  =  suc  y )
60 1onn 6093 . . . . . . . . . . . 12  |-  1o  e.  om
61 eleq2 2101 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  ( (/) 
e.  x  <->  (/)  e.  1o ) )
62 oveq2 5520 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  ( A  +o  x )  =  ( A  +o  1o ) )
6362eqeq1d 2048 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  (
( A  +o  x
)  =  suc  y  <->  ( A  +o  1o )  =  suc  y ) )
6461, 63anbi12d 442 . . . . . . . . . . . . 13  |-  ( x  =  1o  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
)  <->  ( (/)  e.  1o  /\  ( A  +o  1o )  =  suc  y ) ) )
6564rspcev 2656 . . . . . . . . . . . 12  |-  ( ( 1o  e.  om  /\  ( (/)  e.  1o  /\  ( A  +o  1o )  =  suc  y ) )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6660, 65mpan 400 . . . . . . . . . . 11  |-  ( (
(/)  e.  1o  /\  ( A  +o  1o )  =  suc  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6754, 59, 66syl2anc 391 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  A  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6867ex 108 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  =  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
6968ad2antlr 458 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  =  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
7052, 69jaod 637 . . . . . . 7  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  (
( A  e.  y  \/  A  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
7125, 70syl5 28 . . . . . 6  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
7271exp31 346 . . . . 5  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  ( A  e.  suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) ) ) )
7311, 16, 21, 24, 72finds2 4324 . . . 4  |-  ( b  e.  om  ->  ( A  e.  om  ->  ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) ) ) )
746, 73vtoclga 2619 . . 3  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
7574impcom 116 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
76 peano1 4317 . . . . . . . . 9  |-  (/)  e.  om
77 nnaord 6082 . . . . . . . . 9  |-  ( (
(/)  e.  om  /\  x  e.  om  /\  A  e. 
om )  ->  ( (/) 
e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x ) ) )
7876, 77mp3an1 1219 . . . . . . . 8  |-  ( ( x  e.  om  /\  A  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
7978ancoms 255 . . . . . . 7  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
80 nna0 6053 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
8180adantr 261 . . . . . . . 8  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  (/) )  =  A )
8281eleq1d 2106 . . . . . . 7  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  x )  <->  A  e.  ( A  +o  x
) ) )
8379, 82bitrd 177 . . . . . 6  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
8483anbi1d 438 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  <-> 
( A  e.  ( A  +o  x )  /\  ( A  +o  x )  =  B ) ) )
85 eleq2 2101 . . . . . 6  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
8685biimpac 282 . . . . 5  |-  ( ( A  e.  ( A  +o  x )  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
)
8784, 86syl6bi 152 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
8887rexlimdva 2433 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
8988adantr 261 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
9075, 89impbid 120 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    = wceq 1243    e. wcel 1393   E.wrex 2307   (/)c0 3224   Oncon0 4100   suc csuc 4102   omcom 4313  (class class class)co 5512   1oc1o 5994    +o coa 5998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005
This theorem is referenced by:  nnawordex  6101  ltexpi  6435
  Copyright terms: Public domain W3C validator