ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn Unicode version

Theorem nfunsn 5207
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )

Proof of Theorem nfunsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 1932 . . . . . . 7  |-  ( E! y  A F y  ->  E* y  A F y )
2 vex 2560 . . . . . . . . . 10  |-  y  e. 
_V
32brres 4618 . . . . . . . . 9  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
4 velsn 3392 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
5 breq1 3767 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
64, 5sylbi 114 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  ( x F y  <-> 
A F y ) )
76biimpac 282 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  { A } )  ->  A F y )
83, 7sylbi 114 . . . . . . . 8  |-  ( x ( F  |`  { A } ) y  ->  A F y )
98moimi 1965 . . . . . . 7  |-  ( E* y  A F y  ->  E* y  x ( F  |`  { A } ) y )
101, 9syl 14 . . . . . 6  |-  ( E! y  A F y  ->  E* y  x ( F  |`  { A } ) y )
1110alrimiv 1754 . . . . 5  |-  ( E! y  A F y  ->  A. x E* y  x ( F  |`  { A } ) y )
12 relres 4639 . . . . 5  |-  Rel  ( F  |`  { A }
)
1311, 12jctil 295 . . . 4  |-  ( E! y  A F y  ->  ( Rel  ( F  |`  { A }
)  /\  A. x E* y  x ( F  |`  { A }
) y ) )
14 dffun6 4916 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x E* y  x ( F  |`  { A } ) y ) )
1513, 14sylibr 137 . . 3  |-  ( E! y  A F y  ->  Fun  ( F  |` 
{ A } ) )
1615con3i 562 . 2  |-  ( -. 
Fun  ( F  |`  { A } )  ->  -.  E! y  A F y )
17 tz6.12-2 5169 . 2  |-  ( -.  E! y  A F y  ->  ( F `  A )  =  (/) )
1816, 17syl 14 1  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   E!weu 1900   E*wmo 1901   (/)c0 3224   {csn 3375   class class class wbr 3764    |` cres 4347   Rel wrel 4350   Fun wfun 4896   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-res 4357  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator