ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeu Unicode version

Theorem negeu 7202
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negeu  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem negeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnegex 7189 . . 3  |-  ( A  e.  CC  ->  E. y  e.  CC  ( A  +  y )  =  0 )
21adantr 261 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  CC  ( A  +  y
)  =  0 )
3 simpl 102 . . . 4  |-  ( ( y  e.  CC  /\  ( A  +  y
)  =  0 )  ->  y  e.  CC )
4 simpr 103 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
5 addcl 7006 . . . 4  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( y  +  B
)  e.  CC )
63, 4, 5syl2anr 274 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  -> 
( y  +  B
)  e.  CC )
7 simplrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  ( A  +  y )  =  0 )
87oveq1d 5527 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  y )  +  B )  =  ( 0  +  B ) )
9 simplll 485 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  A  e.  CC )
10 simplrl 487 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  y  e.  CC )
11 simpllr 486 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  B  e.  CC )
129, 10, 11addassd 7049 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  y )  +  B )  =  ( A  +  ( y  +  B
) ) )
1311addid2d 7163 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
0  +  B )  =  B )
148, 12, 133eqtr3rd 2081 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  B  =  ( A  +  ( y  +  B
) ) )
1514eqeq2d 2051 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  B  <->  ( A  +  x )  =  ( A  +  ( y  +  B ) ) ) )
16 simpr 103 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  x  e.  CC )
1710, 11addcld 7046 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
y  +  B )  e.  CC )
189, 16, 17addcand 7195 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  ( A  +  ( y  +  B ) )  <->  x  =  ( y  +  B
) ) )
1915, 18bitrd 177 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  B  <->  x  =  ( y  +  B
) ) )
2019ralrimiva 2392 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  ->  A. x  e.  CC  ( ( A  +  x )  =  B  <-> 
x  =  ( y  +  B ) ) )
21 reu6i 2732 . . 3  |-  ( ( ( y  +  B
)  e.  CC  /\  A. x  e.  CC  (
( A  +  x
)  =  B  <->  x  =  ( y  +  B
) ) )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
226, 20, 21syl2anc 391 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
232, 22rexlimddv 2437 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   E!wreu 2308  (class class class)co 5512   CCcc 6887   0cc0 6889    + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  subval  7203  subcl  7210  subadd  7214
  Copyright terms: Public domain W3C validator