ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu Unicode version

Theorem ltexprlemopu 6701
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemopu  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemopu
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemelu 6697 . . . 4  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
32simprbi 260 . . 3  |-  ( r  e.  ( 2nd `  C
)  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
4 19.42v 1786 . . . . . . . 8  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
5 19.42v 1786 . . . . . . . . 9  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
65anbi2i 430 . . . . . . . 8  |-  ( ( A  <P  B  /\  E. y ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
74, 6bitri 173 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  <->  ( A  <P  B  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8 ltrelpr 6603 . . . . . . . . . . . . . . 15  |-  <P  C_  ( P.  X.  P. )
98brel 4392 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simprd 107 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
11 prop 6573 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1210, 11syl 14 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prnminu 6587 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1412, 13sylan 267 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  +Q  r
)  e.  ( 2nd `  B ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
1514adantrl 447 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  ->  E. s  e.  ( 2nd `  B
) s  <Q  (
y  +Q  r ) )
1615adantrl 447 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. s  e.  ( 2nd `  B ) s 
<Q  ( y  +Q  r
) )
17 ltdfpr 6604 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) ) )
1817biimpd 132 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )
199, 18mpcom 32 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
2019ad2antrr 457 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. t  e.  Q.  ( t  e.  ( 2nd `  A
)  /\  t  e.  ( 1st `  B ) ) )
219simpld 105 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  A  e. 
P. )
2221ad2antrr 457 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  A  e.  P. )
2322adantr 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  e.  P. )
24 simplrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) ) )
2524simpld 105 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  ( 1st `  A
) )
2625adantr 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 1st `  A ) )
27 simprrl 491 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 2nd `  A ) )
28 prop 6573 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
29 prltlu 6585 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3028, 29syl3an1 1168 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A )  /\  t  e.  ( 2nd `  A
) )  ->  y  <Q  t )
3123, 26, 27, 30syl3anc 1135 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  t )
32 simplll 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  ->  A  <P  B )
33 simprrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 1st `  B ) )
34 simplrl 487 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 2nd `  B ) )
35 prltlu 6585 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3612, 35syl3an1 1168 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  t  e.  ( 1st `  B )  /\  s  e.  ( 2nd `  B
) )  ->  t  <Q  s )
3732, 33, 34, 36syl3anc 1135 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
t  <Q  s )
38 ltsonq 6496 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
39 ltrelnq 6463 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4038, 39sotri 4720 . . . . . . . . . . . . 13  |-  ( ( y  <Q  t  /\  t  <Q  s )  -> 
y  <Q  s )
4131, 37, 40syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
t  e.  Q.  /\  ( t  e.  ( 2nd `  A )  /\  t  e.  ( 1st `  B ) ) ) )  -> 
y  <Q  s )
4220, 41rexlimddv 2437 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  <Q  s )
43 elprnql 6579 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4428, 43sylan 267 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
4522, 25, 44syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  y  e.  Q. )
46 elprnqu 6580 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4712, 46sylan 267 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  s  e.  ( 2nd `  B ) )  -> 
s  e.  Q. )
4847ad2ant2r 478 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  s  e.  Q. )
49 ltexnqq 6506 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  s  e.  Q. )  ->  ( y  <Q  s  <->  E. q  e.  Q.  (
y  +Q  q )  =  s ) )
5045, 48, 49syl2anc 391 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  (
y  <Q  s  <->  E. q  e.  Q.  ( y  +Q  q )  =  s ) )
5142, 50mpbid 135 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  =  s )
52 simprr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  =  s )
53 simplrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  <Q  ( y  +Q  r ) )
5452, 53eqbrtrd 3784 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
55 simprl 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  e.  Q. )
56 simplrl 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  r  e.  Q. )
5756adantr 261 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  r  e.  Q. )
5845adantr 261 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  Q. )
59 ltanqg 6498 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Q.  /\  r  e.  Q.  /\  y  e.  Q. )  ->  (
q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6055, 57, 58, 59syl3anc 1135 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
6154, 60mpbird 156 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  q  <Q  r )
6225adantr 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  y  e.  ( 1st `  A ) )
63 simplrl 487 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  s  e.  ( 2nd `  B ) )
6452, 63eqeltrd 2114 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  +Q  q )  e.  ( 2nd `  B ) )
6562, 64jca 290 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )
6661, 55, 65jca32 293 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  (
q  e.  Q.  /\  ( y  +Q  q
)  =  s ) )  ->  ( q  <Q  r  /\  ( q  e.  Q.  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  q )  e.  ( 2nd `  B
) ) ) ) )
6766expr 357 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  /\  q  e.  Q. )  ->  (
( y  +Q  q
)  =  s  -> 
( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6867reximdva 2421 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  ( E. q  e.  Q.  ( y  +Q  q
)  =  s  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) ) )
6951, 68mpd 13 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  /\  ( s  e.  ( 2nd `  B )  /\  s  <Q  (
y  +Q  r ) ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7016, 69rexlimddv 2437 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7170eximi 1491 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( r  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
727, 71sylbir 125 . . . . . 6  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. y E. q  e. 
Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
73 rexcom4 2577 . . . . . 6  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. y E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7472, 73sylibr 137 . . . . 5  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
75 19.42v 1786 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
76 19.42v 1786 . . . . . . . 8  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
7776anbi2i 430 . . . . . . 7  |-  ( ( q  <Q  r  /\  E. y ( q  e. 
Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7875, 77bitri 173 . . . . . 6  |-  ( E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
7978rexbii 2331 . . . . 5  |-  ( E. q  e.  Q.  E. y ( q  <Q 
r  /\  ( q  e.  Q.  /\  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8074, 79sylib 127 . . . 4  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
811ltexprlemelu 6697 . . . . . 6  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
8281anbi2i 430 . . . . 5  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  C ) )  <->  ( q  <Q  r  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8382rexbii 2331 . . . 4  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  C
) )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  ( q  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
8480, 83sylibr 137 . . 3  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
853, 84sylanr2 385 . 2  |-  ( ( A  <P  B  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
86853impb 1100 1  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   {crab 2310   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    +Q cplq 6380    <Q cltq 6383   P.cnp 6389    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  ltexprlemrnd  6703
  Copyright terms: Public domain W3C validator