ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm Unicode version

Theorem ltexprlemm 6698
Description: Our constructed difference is inhabited. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemm  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6603 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4392 . . . . . . . 8  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 6604 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) ) )
43biimpd 132 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )
52, 4mpcom 32 . . . . . . 7  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) )
6 simprrl 491 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 2nd `  A ) )
72simprd 107 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
8 prop 6573 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 prnmaxl 6586 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
108, 9sylan 267 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
11 ltexnqi 6507 . . . . . . . . . . . . . . . . . 18  |-  ( y 
<Q  w  ->  E. q  e.  Q.  ( y  +Q  q )  =  w )
1211reximi 2416 . . . . . . . . . . . . . . . . 17  |-  ( E. w  e.  ( 1st `  B ) y  <Q  w  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q
)  =  w )
1310, 12syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  (
y  +Q  q )  =  w )
14 df-rex 2312 . . . . . . . . . . . . . . . 16  |-  ( E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q )  =  w  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1513, 14sylib 127 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
16 r19.42v 2467 . . . . . . . . . . . . . . . 16  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  <->  ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1716exbii 1496 . . . . . . . . . . . . . . 15  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1815, 17sylibr 137 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w ) )
19 eleq1 2100 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  q )  =  w  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  <->  w  e.  ( 1st `  B ) ) )
2019biimparc 283 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  -> 
( y  +Q  q
)  e.  ( 1st `  B ) )
2120reximi 2416 . . . . . . . . . . . . . . 15  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2221exlimiv 1489 . . . . . . . . . . . . . 14  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2318, 22syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
247, 23sylan 267 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2524adantrl 447 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2625adantrl 447 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
276, 26jca 290 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 2nd `  A )  /\  E. q  e. 
Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2827expr 357 . . . . . . . 8  |-  ( ( A  <P  B  /\  y  e.  Q. )  ->  ( ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) )  ->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
2928reximdva 2421 . . . . . . 7  |-  ( A 
<P  B  ->  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B
) )  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
305, 29mpd 13 . . . . . 6  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
31 r19.42v 2467 . . . . . . 7  |-  ( E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3231rexbii 2331 . . . . . 6  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3330, 32sylibr 137 . . . . 5  |-  ( A 
<P  B  ->  E. y  e.  Q.  E. q  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
34 rexcom 2474 . . . . 5  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3533, 34sylib 127 . . . 4  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
362simpld 105 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  e. 
P. )
37 prop 6573 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
38 elprnqu 6580 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
3937, 38sylan 267 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4036, 39sylan 267 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4140ex 108 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  ->  y  e.  Q. ) )
4241pm4.71rd 374 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  <->  ( y  e. 
Q.  /\  y  e.  ( 2nd `  A ) ) ) )
4342anbi1d 438 . . . . . . . 8  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( (
y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) ) ) )
44 anass 381 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4543, 44syl6bb 185 . . . . . . 7  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
4645exbidv 1706 . . . . . 6  |-  ( A 
<P  B  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. y ( y  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) ) )
4746rexbidv 2327 . . . . 5  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y ( y  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
48 df-rex 2312 . . . . . 6  |-  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y
( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4948rexbii 2331 . . . . 5  |-  ( E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5047, 49syl6bbr 187 . . . 4  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) )
5135, 50mpbird 156 . . 3  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) )
52 ltexprlem.1 . . . . . 6  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
5352ltexprlemell 6696 . . . . 5  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5453rexbii 2331 . . . 4  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
55 ssid 2964 . . . . 5  |-  Q.  C_  Q.
56 rexss 3007 . . . . 5  |-  ( Q.  C_  Q.  ->  ( E. q  e.  Q.  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
5755, 56ax-mp 7 . . . 4  |-  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5854, 57bitr4i 176 . . 3  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
5951, 58sylibr 137 . 2  |-  ( A 
<P  B  ->  E. q  e.  Q.  q  e.  ( 1st `  C ) )
60 nfv 1421 . . 3  |-  F/ r  A  <P  B
61 nfre1 2365 . . 3  |-  F/ r E. r  e.  Q.  r  e.  ( 2nd `  C )
62 prmu 6576 . . . . 5  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
63 rexex 2368 . . . . 5  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  B
)  ->  E. r 
r  e.  ( 2nd `  B ) )
6462, 63syl 14 . . . 4  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  r  e.  ( 2nd `  B
) )
657, 8, 643syl 17 . . 3  |-  ( A 
<P  B  ->  E. r 
r  e.  ( 2nd `  B ) )
66 elprnqu 6580 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
678, 66sylan 267 . . . . . 6  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
687, 67sylan 267 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
69 prml 6575 . . . . . . . . 9  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
7037, 69syl 14 . . . . . . . 8  |-  ( A  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
71 rexex 2368 . . . . . . . 8  |-  ( E. y  e.  Q.  y  e.  ( 1st `  A
)  ->  E. y 
y  e.  ( 1st `  A ) )
7236, 70, 713syl 17 . . . . . . 7  |-  ( A 
<P  B  ->  E. y 
y  e.  ( 1st `  A ) )
7372adantr 261 . . . . . 6  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. y  y  e.  ( 1st `  A ) )
74683adant3 924 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  Q. )
75 simp3 906 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  ( 1st `  A
) )
76 elprnql 6579 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7737, 76sylan 267 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7836, 77sylan 267 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
79783adant2 923 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  Q. )
80 addcomnqg 6479 . . . . . . . . . . . 12  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  ( r  +Q  y
)  =  ( y  +Q  r ) )
8174, 79, 80syl2anc 391 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  =  ( y  +Q  r ) )
82 ltaddnq 6505 . . . . . . . . . . . . 13  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  r  <Q  ( r  +Q  y ) )
8374, 79, 82syl2anc 391 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  <Q  ( r  +Q  y
) )
84 prcunqu 6583 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
858, 84sylan 267 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
867, 85sylan 267 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
87863adant3 924 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  <Q  ( r  +Q  y )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) ) )
8883, 87mpd 13 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) )
8981, 88eqeltrrd 2115 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
y  +Q  r )  e.  ( 2nd `  B
) )
90 19.8a 1482 . . . . . . . . . 10  |-  ( ( y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9175, 89, 90syl2anc 391 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9274, 91jca 290 . . . . . . . 8  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9352ltexprlemelu 6697 . . . . . . . 8  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9492, 93sylibr 137 . . . . . . 7  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  C
) )
95943expa 1104 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  /\  y  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  C ) )
9673, 95exlimddv 1778 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  ( 2nd `  C ) )
97 19.8a 1482 . . . . 5  |-  ( ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
9868, 96, 97syl2anc 391 . . . 4  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
99 df-rex 2312 . . . 4  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  C
)  <->  E. r ( r  e.  Q.  /\  r  e.  ( 2nd `  C
) ) )
10098, 99sylibr 137 . . 3  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10160, 61, 65, 100exlimdd 1752 . 2  |-  ( A 
<P  B  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10259, 101jca 290 1  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   {crab 2310    C_ wss 2917   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    +Q cplq 6380    <Q cltq 6383   P.cnp 6389    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  ltexprlempr  6706
  Copyright terms: Public domain W3C validator