ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issref Unicode version

Theorem issref 4707
Description: Two ways to state a relation is reflexive. Adapted from Tarski. (Contributed by FL, 15-Jan-2012.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
issref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem issref
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ral 2311 . 2  |-  ( A. x  e.  A  x R x  <->  A. x ( x  e.  A  ->  x R x ) )
2 vex 2560 . . . . 5  |-  x  e. 
_V
3 opelresi 4623 . . . . 5  |-  ( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A ) )
42, 3ax-mp 7 . . . 4  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A )
5 df-br 3765 . . . . 5  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
65bicomi 123 . . . 4  |-  ( <.
x ,  x >.  e.  R  <->  x R x )
74, 6imbi12i 228 . . 3  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  ( x  e.  A  ->  x R x ) )
87albii 1359 . 2  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( x  e.  A  ->  x R x ) )
9 ralidm 3321 . . . . . 6  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
10 ralv 2571 . . . . . 6  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
119, 10bitri 173 . . . . 5  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
12 df-ral 2311 . . . . . . . . 9  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) ) )
13 pm2.27 35 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  (
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) ) )
14 opelresg 4619 . . . . . . . . . . . . . . 15  |-  ( z  e.  _V  ->  ( <. x ,  z >.  e.  (  _I  |`  A )  <-> 
( <. x ,  z
>.  e.  _I  /\  x  e.  A ) ) )
15 df-br 3765 . . . . . . . . . . . . . . . . 17  |-  ( x  _I  z  <->  <. x ,  z >.  e.  _I  )
16 vex 2560 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
_V
1716ideq 4488 . . . . . . . . . . . . . . . . . 18  |-  ( x  _I  z  <->  x  =  z )
18 opelresi 4623 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  A  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A ) )
19 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  x >.  e.  R ) )
20 opeq2 3550 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  <. x ,  x >.  =  <. x ,  z >. )
2120eleq1d 2106 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( <. x ,  x >.  e.  R  <->  <. x ,  z
>.  e.  R ) )
2221biimpcd 148 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  x >.  e.  R  ->  ( x  =  z  ->  <. x ,  z >.  e.  R
) )
2319, 22syl6 29 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( x  =  z  ->  <. x ,  z
>.  e.  R ) ) )
2418, 23syl6bir 153 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  (
x  =  z  ->  <. x ,  z >.  e.  R ) ) ) )
2524pm2.43i 43 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( x  =  z  ->  <. x ,  z
>.  e.  R ) ) )
2625com3r 73 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R
) ) )
2717, 26sylbi 114 . . . . . . . . . . . . . . . . 17  |-  ( x  _I  z  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R
) ) )
2815, 27sylbir 125 . . . . . . . . . . . . . . . 16  |-  ( <.
x ,  z >.  e.  _I  ->  ( x  e.  A  ->  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) ) )
2928imp 115 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  z >.  e.  _I  /\  x  e.  A )  ->  (
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) )
3014, 29syl6bi 152 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( <. x ,  z >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) ) )
3130com3r 73 . . . . . . . . . . . . 13  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( z  e.  _V  ->  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) ) )
3231ralrimiv 2391 . . . . . . . . . . . 12  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3313, 32syl6 29 . . . . . . . . . . 11  |-  ( x  e.  _V  ->  (
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) ) )
342, 33ax-mp 7 . . . . . . . . . 10  |-  ( ( x  e.  _V  ->  (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3534sps 1430 . . . . . . . . 9  |-  ( A. x ( x  e. 
_V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3612, 35sylbi 114 . . . . . . . 8  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3736ralimi 2384 . . . . . . 7  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. x  e.  _V  A. z  e. 
_V  ( <. x ,  z >.  e.  (  _I  |`  A )  -> 
<. x ,  z >.  e.  R ) )
38 eleq1 2100 . . . . . . . . 9  |-  ( y  =  <. x ,  z
>.  ->  ( y  e.  (  _I  |`  A )  <->  <. x ,  z >.  e.  (  _I  |`  A ) ) )
39 eleq1 2100 . . . . . . . . 9  |-  ( y  =  <. x ,  z
>.  ->  ( y  e.  R  <->  <. x ,  z
>.  e.  R ) )
4038, 39imbi12d 223 . . . . . . . 8  |-  ( y  =  <. x ,  z
>.  ->  ( ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  ( <. x ,  z >.  e.  (  _I  |`  A )  -> 
<. x ,  z >.  e.  R ) ) )
4140ralxp 4479 . . . . . . 7  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  A. x  e.  _V  A. z  e.  _V  ( <. x ,  z >.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
4237, 41sylibr 137 . . . . . 6  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )
43 df-ral 2311 . . . . . . 7  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  A. y ( y  e.  ( _V  X.  _V )  ->  ( y  e.  (  _I  |`  A )  ->  y  e.  R
) ) )
44 relres 4639 . . . . . . . . . . . 12  |-  Rel  (  _I  |`  A )
45 df-rel 4352 . . . . . . . . . . . 12  |-  ( Rel  (  _I  |`  A )  <-> 
(  _I  |`  A ) 
C_  ( _V  X.  _V ) )
4644, 45mpbi 133 . . . . . . . . . . 11  |-  (  _I  |`  A )  C_  ( _V  X.  _V )
4746sseli 2941 . . . . . . . . . 10  |-  ( y  e.  (  _I  |`  A )  ->  y  e.  ( _V  X.  _V )
)
4847ancri 307 . . . . . . . . 9  |-  ( y  e.  (  _I  |`  A )  ->  ( y  e.  ( _V  X.  _V )  /\  y  e.  (  _I  |`  A )
) )
49 pm3.31 249 . . . . . . . . 9  |-  ( ( y  e.  ( _V 
X.  _V )  ->  (
y  e.  (  _I  |`  A )  ->  y  e.  R ) )  -> 
( ( y  e.  ( _V  X.  _V )  /\  y  e.  (  _I  |`  A )
)  ->  y  e.  R ) )
5048, 49syl5 28 . . . . . . . 8  |-  ( ( y  e.  ( _V 
X.  _V )  ->  (
y  e.  (  _I  |`  A )  ->  y  e.  R ) )  -> 
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5150alimi 1344 . . . . . . 7  |-  ( A. y ( y  e.  ( _V  X.  _V )  ->  ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5243, 51sylbi 114 . . . . . 6  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5342, 52syl 14 . . . . 5  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5411, 53sylbir 125 . . . 4  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
55 dfss2 2934 . . . 4  |-  ( (  _I  |`  A )  C_  R  <->  A. y ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )
5654, 55sylibr 137 . . 3  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  (  _I  |`  A )  C_  R )
57 ssel 2939 . . . 4  |-  ( (  _I  |`  A )  C_  R  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  -> 
<. x ,  x >.  e.  R ) )
5857alrimiv 1754 . . 3  |-  ( (  _I  |`  A )  C_  R  ->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
5956, 58impbii 117 . 2  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  (  _I  |`  A )  C_  R
)
601, 8, 593bitr2ri 198 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557    C_ wss 2917   <.cop 3378   class class class wbr 3764    _I cid 4025    X. cxp 4343    |` cres 4347   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-res 4357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator