ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfveq2 Unicode version

Theorem iseqfveq2 9228
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq2.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
iseqfveq2.2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  ( G `
 K ) )
iseqfveq2.s  |-  ( ph  ->  S  e.  V )
iseqfveq2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqfveq2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
iseqfveq2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqfveq2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
iseqfveq2.4  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
iseqfveq2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) )
Distinct variable groups:    x, k, y, F    k, G, x, y    k, K, x, y    k, N, x, y    ph, k, x, y   
k, M, x, y    .+ , k, x, y    S, k, x, y
Allowed substitution hints:    V( x, y, k)

Proof of Theorem iseqfveq2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqfveq2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 8896 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2100 . . . . . 6  |-  ( z  =  K  ->  (
z  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5178 . . . . . . 7  |-  ( z  =  K  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 K ) )
6 fveq2 5178 . . . . . . 7  |-  ( z  =  K  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 K ) )
75, 6eqeq12d 2054 . . . . . 6  |-  ( z  =  K  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  (  seq K (  .+  ,  G ,  S ) `  K ) ) )
84, 7imbi12d 223 . . . . 5  |-  ( z  =  K  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  K )  =  (  seq K (  .+  ,  G ,  S ) `
 K ) ) ) )
98imbi2d 219 . . . 4  |-  ( z  =  K  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 K )  =  (  seq K ( 
.+  ,  G ,  S ) `  K
) ) ) ) )
10 eleq1 2100 . . . . . 6  |-  ( z  =  w  ->  (
z  e.  ( K ... N )  <->  w  e.  ( K ... N ) ) )
11 fveq2 5178 . . . . . . 7  |-  ( z  =  w  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 w ) )
12 fveq2 5178 . . . . . . 7  |-  ( z  =  w  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) )
1311, 12eqeq12d 2054 . . . . . 6  |-  ( z  =  w  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  w
)  =  (  seq K (  .+  ,  G ,  S ) `  w ) ) )
1410, 13imbi12d 223 . . . . 5  |-  ( z  =  w  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( w  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) ) ) )
1514imbi2d 219 . . . 4  |-  ( z  =  w  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( w  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) ) ) ) )
16 eleq1 2100 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
z  e.  ( K ... N )  <->  ( w  +  1 )  e.  ( K ... N
) ) )
17 fveq2 5178 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) ) )
18 fveq2 5178 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) )
1917, 18eqeq12d 2054 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  (
w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) ) ) )
2016, 19imbi12d 223 . . . . 5  |-  ( z  =  ( w  + 
1 )  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( (
w  +  1 )  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) ) ) )
2120imbi2d 219 . . . 4  |-  ( z  =  ( w  + 
1 )  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( ( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) ) ) )
22 eleq1 2100 . . . . . 6  |-  ( z  =  N  ->  (
z  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
23 fveq2 5178 . . . . . . 7  |-  ( z  =  N  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 N ) )
24 fveq2 5178 . . . . . . 7  |-  ( z  =  N  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 N ) )
2523, 24eqeq12d 2054 . . . . . 6  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) ) )
2622, 25imbi12d 223 . . . . 5  |-  ( z  =  N  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( N  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  (  seq K (  .+  ,  G ,  S ) `
 N ) ) ) )
2726imbi2d 219 . . . 4  |-  ( z  =  N  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 N )  =  (  seq K ( 
.+  ,  G ,  S ) `  N
) ) ) ) )
28 iseqfveq2.2 . . . . . . 7  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  ( G `
 K ) )
29 iseqfveq2.1 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
30 eluzelz 8482 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
3129, 30syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
32 iseqfveq2.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
33 iseqfveq2.g . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
34 iseqfveq2.pl . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3531, 32, 33, 34iseq1 9222 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  G ,  S ) `  K
)  =  ( G `
 K ) )
3628, 35eqtr4d 2075 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  (  seq K (  .+  ,  G ,  S ) `  K ) )
3736a1d 22 . . . . 5  |-  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  (  seq K (  .+  ,  G ,  S ) `  K ) ) )
3837a1i 9 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  K )  =  (  seq K (  .+  ,  G ,  S ) `
 K ) ) ) )
39 peano2fzr 8901 . . . . . . . . . 10  |-  ( ( w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) )  ->  w  e.  ( K ... N ) )
4039adantl 262 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  w  e.  ( K ... N ) )
4140expr 357 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  +  1 )  e.  ( K ... N )  ->  w  e.  ( K ... N
) ) )
4241imim1d 69 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) )  ->  (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) ) ) )
43 oveq1 5519 . . . . . . . . . 10  |-  ( (  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  w )  .+  ( F `  ( w  +  1 ) ) )  =  ( (  seq K (  .+  ,  G ,  S ) `
 w )  .+  ( F `  ( w  +  1 ) ) ) )
44 simprl 483 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  w  e.  ( ZZ>= `  K )
)
4529adantr 261 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  K  e.  ( ZZ>= `  M )
)
46 uztrn 8489 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  w  e.  ( ZZ>= `  M )
)
4744, 45, 46syl2anc 391 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  w  e.  ( ZZ>= `  M )
)
4832adantr 261 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  S  e.  V )
49 iseqfveq2.f . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
5049adantlr 446 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
5134adantlr 446 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
5247, 48, 50, 51iseqp1 9225 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  w
)  .+  ( F `  ( w  +  1 ) ) ) )
5333adantlr 446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  K ) )  ->  ( G `  x )  e.  S
)
5444, 48, 53, 51iseqp1 9225 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) )  =  ( (  seq K ( 
.+  ,  G ,  S ) `  w
)  .+  ( G `  ( w  +  1 ) ) ) )
55 eluzp1p1 8498 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( ZZ>= `  K
)  ->  ( w  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5655ad2antrl 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( w  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
57 elfzuz3 8887 . . . . . . . . . . . . . . . 16  |-  ( ( w  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( w  +  1 ) ) )
5857ad2antll 460 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( w  +  1 ) ) )
59 elfzuzb 8884 . . . . . . . . . . . . . . 15  |-  ( ( w  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
w  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( w  +  1 ) ) ) )
6056, 58, 59sylanbrc 394 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( w  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
61 iseqfveq2.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
6261ralrimiva 2392 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  ( ( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k ) )
6362adantr 261 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  A. k  e.  ( ( K  + 
1 ) ... N
) ( F `  k )  =  ( G `  k ) )
64 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( w  + 
1 )  ->  ( F `  k )  =  ( F `  ( w  +  1
) ) )
65 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( w  + 
1 )  ->  ( G `  k )  =  ( G `  ( w  +  1
) ) )
6664, 65eqeq12d 2054 . . . . . . . . . . . . . . 15  |-  ( k  =  ( w  + 
1 )  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  ( w  +  1 ) )  =  ( G `  ( w  +  1 ) ) ) )
6766rspcv 2652 . . . . . . . . . . . . . 14  |-  ( ( w  +  1 )  e.  ( ( K  +  1 ) ... N )  ->  ( A. k  e.  (
( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k )  -> 
( F `  (
w  +  1 ) )  =  ( G `
 ( w  + 
1 ) ) ) )
6860, 63, 67sylc 56 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( w  +  1 ) )  =  ( G `  ( w  +  1 ) ) )
6968oveq2d 5528 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq K (  .+  ,  G ,  S ) `  w )  .+  ( F `  ( w  +  1 ) ) )  =  ( (  seq K (  .+  ,  G ,  S ) `
 w )  .+  ( G `  ( w  +  1 ) ) ) )
7054, 69eqtr4d 2075 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) )  =  ( (  seq K ( 
.+  ,  G ,  S ) `  w
)  .+  ( F `  ( w  +  1 ) ) ) )
7152, 70eqeq12d 2054 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) )  <->  ( (  seq M (  .+  ,  F ,  S ) `  w )  .+  ( F `  ( w  +  1 ) ) )  =  ( (  seq K (  .+  ,  G ,  S ) `
 w )  .+  ( F `  ( w  +  1 ) ) ) ) )
7243, 71syl5ibr 145 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) )
7372expr 357 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  +  1 )  e.  ( K ... N )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) ) ) )
7473a2d 23 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) )  ->  (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) ) )
7542, 74syld 40 . . . . . 6  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) )  ->  (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) ) )
7675expcom 109 . . . . 5  |-  ( w  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( ( w  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) )  ->  ( ( w  +  1 )  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) ) ) ) )
7776a2d 23 . . . 4  |-  ( w  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( w  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) ) )  ->  ( ph  ->  ( ( w  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  (
w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) ) ) ) ) )
789, 15, 21, 27, 38, 77uzind4 8531 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) ) ) )
791, 78mpcom 32 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) ) )
803, 79mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   ` cfv 4902  (class class class)co 5512   1c1 6890    + caddc 6892   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875  df-iseq 9212
This theorem is referenced by:  iseqfeq2  9229  iseqfveq  9230
  Copyright terms: Public domain W3C validator