ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg Unicode version

Theorem funtpg 4950
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 901 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 901 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 904 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 funprg 4949 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  Fun  {
<. X ,  A >. , 
<. Y ,  B >. } )
51, 2, 3, 4syl3an 1177 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. } )
6 simp13 936 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Z  e.  W )
7 simp23 939 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  C  e.  H )
8 funsng 4946 . . . 4  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  Fun  { <. Z ,  C >. } )
96, 7, 8syl2anc 391 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. Z ,  C >. } )
1023ad2ant2 926 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( A  e.  F  /\  B  e.  G
) )
11 dmpropg 4793 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  G )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }
)
1210, 11syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y } )
13 dmsnopg 4792 . . . . . 6  |-  ( C  e.  H  ->  dom  {
<. Z ,  C >. }  =  { Z }
)
147, 13syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. Z ,  C >. }  =  { Z } )
1512, 14ineq12d 3139 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  ( { X ,  Y }  i^i  { Z } ) )
16 elpri 3398 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 nner 2210 . . . . . . . . . . . 12  |-  ( X  =  Z  ->  -.  X  =/=  Z )
1817eqcoms 2043 . . . . . . . . . . 11  |-  ( Z  =  X  ->  -.  X  =/=  Z )
19 3mix2 1074 . . . . . . . . . . 11  |-  ( -.  X  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2018, 19syl 14 . . . . . . . . . 10  |-  ( Z  =  X  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
21 nner 2210 . . . . . . . . . . . 12  |-  ( Y  =  Z  ->  -.  Y  =/=  Z )
2221eqcoms 2043 . . . . . . . . . . 11  |-  ( Z  =  Y  ->  -.  Y  =/=  Z )
23 3mix3 1075 . . . . . . . . . . 11  |-  ( -.  Y  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2422, 23syl 14 . . . . . . . . . 10  |-  ( Z  =  Y  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
2520, 24jaoi 636 . . . . . . . . 9  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  ( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
26 3ianorr 1204 . . . . . . . . 9  |-  ( ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
)  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2725, 26syl 14 . . . . . . . 8  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  -.  ( X  =/= 
Y  /\  X  =/=  Z  /\  Y  =/=  Z
) )
2816, 27syl 14 . . . . . . 7  |-  ( Z  e.  { X ,  Y }  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2928con2i 557 . . . . . 6  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
30 disjsn 3432 . . . . . 6  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
3129, 30sylibr 137 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  ( { X ,  Y }  i^i  { Z } )  =  (/) )
32313ad2ant3 927 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
3315, 32eqtrd 2072 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  (/) )
34 funun 4944 . . 3  |-  ( ( ( Fun  { <. X ,  A >. ,  <. Y ,  B >. }  /\  Fun  { <. Z ,  C >. } )  /\  ( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  { <. Z ,  C >. } )  =  (/) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
355, 9, 33, 34syl21anc 1134 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
36 df-tp 3383 . . 3  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3736funeqi 4922 . 2  |-  ( Fun 
{ <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  <->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) )
3835, 37sylibr 137 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629    \/ w3o 884    /\ w3a 885    = wceq 1243    e. wcel 1393    =/= wne 2204    u. cun 2915    i^i cin 2916   (/)c0 3224   {csn 3375   {cpr 3376   {ctp 3377   <.cop 3378   dom cdm 4345   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-tp 3383  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-fun 4904
This theorem is referenced by:  fntpg  4955
  Copyright terms: Public domain W3C validator