ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuc Unicode version

Theorem frecuzrdgsuc 9201
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9185 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 28-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgfn.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdgsuc  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
 B ) ) )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)    V( x, y)

Proof of Theorem frecuzrdgsuc
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
21adantr 261 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
3 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
4 uzrdg.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
54adantr 261 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  S  e.  V )
6 uzrdg.a . . . . . . 7  |-  ( ph  ->  A  e.  S )
76adantr 261 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
8 uzrdg.f . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
98adantlr 446 . . . . . 6  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
10 uzrdg.2 . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
11 peano2uz 8526 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
1211adantl 262 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
132, 3, 5, 7, 9, 10, 12frecuzrdglem 9197 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  ran  R )
14 frecuzrdgfn.3 . . . . . 6  |-  ( ph  ->  T  =  ran  R
)
1514adantr 261 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  T  =  ran  R )
1613, 15eleqtrrd 2117 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  T
)
171, 3, 4, 6, 8, 10, 14frecuzrdgfn 9198 . . . . . . 7  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
18 fnfun 4996 . . . . . . 7  |-  ( T  Fn  ( ZZ>= `  C
)  ->  Fun  T )
1917, 18syl 14 . . . . . 6  |-  ( ph  ->  Fun  T )
20 funopfv 5213 . . . . . 6  |-  ( Fun 
T  ->  ( <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  T  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
2119, 20syl 14 . . . . 5  |-  ( ph  ->  ( <. ( B  + 
1 ) ,  ( 2nd `  ( R `
 ( `' G `  ( B  +  1 ) ) ) )
>.  e.  T  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
2221adantr 261 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  T  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
2316, 22mpd 13 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `
 ( `' G `  ( B  +  1 ) ) ) ) )
241, 3frec2uzf1od 9192 . . . . . . . . 9  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
25 f1ocnvdm 5421 . . . . . . . . 9  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
2624, 25sylan 267 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  B )  e.  om )
272, 3, 26frec2uzsucd 9187 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  suc  ( `' G `  B ) )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
28 f1ocnvfv2 5418 . . . . . . . . 9  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
2924, 28sylan 267 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  B ) )  =  B )
3029oveq1d 5527 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
)  +  1 )  =  ( B  + 
1 ) )
3127, 30eqtrd 2072 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 ) )
32 peano2 4318 . . . . . . . 8  |-  ( ( `' G `  B )  e.  om  ->  suc  ( `' G `  B )  e.  om )
3326, 32syl 14 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  suc  ( `' G `  B )  e.  om )
34 f1ocnvfv 5419 . . . . . . . 8  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  suc  ( `' G `  B )  e.  om )  ->  ( ( G `
 suc  ( `' G `  B )
)  =  ( B  +  1 )  -> 
( `' G `  ( B  +  1
) )  =  suc  ( `' G `  B ) ) )
3524, 34sylan 267 . . . . . . 7  |-  ( (
ph  /\  suc  ( `' G `  B )  e.  om )  -> 
( ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 )  ->  ( `' G `  ( B  +  1 ) )  =  suc  ( `' G `  B ) ) )
3633, 35syldan 266 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 )  -> 
( `' G `  ( B  +  1
) )  =  suc  ( `' G `  B ) ) )
3731, 36mpd 13 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  ( B  +  1 ) )  =  suc  ( `' G `  B ) )
3837fveq2d 5182 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  ( B  +  1
) ) )  =  ( R `  suc  ( `' G `  B ) ) )
3938fveq2d 5182 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) )  =  ( 2nd `  ( R `
 suc  ( `' G `  B )
) ) )
4023, 39eqtrd 2072 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `
 suc  ( `' G `  B )
) ) )
41 zex 8254 . . . . . . . . . . 11  |-  ZZ  e.  _V
42 uzssz 8492 . . . . . . . . . . 11  |-  ( ZZ>= `  C )  C_  ZZ
4341, 42ssexi 3895 . . . . . . . . . 10  |-  ( ZZ>= `  C )  e.  _V
44 mpt2exga 5835 . . . . . . . . . 10  |-  ( ( ( ZZ>= `  C )  e.  _V  /\  S  e.  V )  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
4543, 44mpan 400 . . . . . . . . 9  |-  ( S  e.  V  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
46 vex 2560 . . . . . . . . . 10  |-  z  e. 
_V
47 fvexg 5194 . . . . . . . . . 10  |-  ( ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
)  e.  _V  /\  z  e.  _V )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
4846, 47mpan2 401 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
495, 45, 483syl 17 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
5049alrimiv 1754 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A. z
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
51 opelxp 4374 . . . . . . . . 9  |-  ( <. C ,  A >.  e.  ( ZZ  X.  S
)  <->  ( C  e.  ZZ  /\  A  e.  S ) )
521, 6, 51sylanbrc 394 . . . . . . . 8  |-  ( ph  -> 
<. C ,  A >.  e.  ( ZZ  X.  S
) )
5352adantr 261 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. C ,  A >.  e.  ( ZZ 
X.  S ) )
54 frecsuc 5991 . . . . . . 7  |-  ( ( A. z ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V  /\ 
<. C ,  A >.  e.  ( ZZ  X.  S
)  /\  ( `' G `  B )  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) ) ) )
5550, 53, 26, 54syl3anc 1135 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) ) ) )
5610fveq1i 5179 . . . . . 6  |-  ( R `
 suc  ( `' G `  B )
)  =  (frec ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )
5710fveq1i 5179 . . . . . . 7  |-  ( R `
 ( `' G `  B ) )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) )
5857fveq2i 5181 . . . . . 6  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  ( `' G `  B ) ) )
5955, 56, 583eqtr4g 2097 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) ) )
602, 3, 5, 7, 9, 10, 26frec2uzrdg 9195 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  = 
<. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
6160fveq2d 5182 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
)
62 df-ov 5515 . . . . . 6  |-  ( ( G `  ( `' G `  B ) ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
6361, 62syl6eqr 2090 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( G `  ( `' G `  B ) ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
642, 3, 26frec2uzuzd 9188 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  B ) )  e.  ( ZZ>= `  C )
)
652, 3, 5, 7, 9, 10frecuzrdgrrn 9194 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( `' G `  B )  e.  om )  ->  ( R `  ( `' G `  B )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
6626, 65mpdan 398 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
67 xp2nd 5793 . . . . . . 7  |-  ( ( R `  ( `' G `  B ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
6866, 67syl 14 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
6930, 12eqeltrd 2114 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
)  +  1 )  e.  ( ZZ>= `  C
) )
709caovclg 5653 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( z  e.  ( ZZ>= `  C )  /\  w  e.  S
) )  ->  (
z F w )  e.  S )
7170, 64, 68caovcld 5654 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S )
72 opexg 3964 . . . . . . 7  |-  ( ( ( ( G `  ( `' G `  B ) )  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S )  ->  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  _V )
7369, 71, 72syl2anc 391 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  _V )
74 oveq1 5519 . . . . . . . 8  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  ( z  +  1 )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
75 oveq1 5519 . . . . . . . 8  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  ( z F w )  =  ( ( G `  ( `' G `  B ) ) F w ) )
7674, 75opeq12d 3557 . . . . . . 7  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  <. ( z  +  1 ) ,  ( z F w ) >.  =  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F w ) >. )
77 oveq2 5520 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  (
( G `  ( `' G `  B ) ) F w )  =  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
7877opeq2d 3556 . . . . . . 7  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F w ) >.  =  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
79 oveq1 5519 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
80 oveq1 5519 . . . . . . . . 9  |-  ( x  =  z  ->  (
x F y )  =  ( z F y ) )
8179, 80opeq12d 3557 . . . . . . . 8  |-  ( x  =  z  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( z  +  1 ) ,  ( z F y ) >. )
82 oveq2 5520 . . . . . . . . 9  |-  ( y  =  w  ->  (
z F y )  =  ( z F w ) )
8382opeq2d 3556 . . . . . . . 8  |-  ( y  =  w  ->  <. (
z  +  1 ) ,  ( z F y ) >.  =  <. ( z  +  1 ) ,  ( z F w ) >. )
8481, 83cbvmpt2v 5584 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
z  e.  ( ZZ>= `  C ) ,  w  e.  S  |->  <. (
z  +  1 ) ,  ( z F w ) >. )
8576, 78, 84ovmpt2g 5635 . . . . . 6  |-  ( ( ( G `  ( `' G `  B ) )  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S  /\  <. ( ( G `
 ( `' G `  B ) )  +  1 ) ,  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) >.  e.  _V )  ->  (
( G `  ( `' G `  B ) ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
8664, 68, 73, 85syl3anc 1135 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
8759, 63, 863eqtrd 2076 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
8887fveq2d 5182 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( 2nd `  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
) )
89 op2ndg 5778 . . . 4  |-  ( ( ( ( G `  ( `' G `  B ) )  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S )  ->  ( 2nd `  <. ( ( G `
 ( `' G `  B ) )  +  1 ) ,  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) >.
)  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9069, 71, 89syl2anc 391 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd ` 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9188, 90eqtrd 2072 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
92 simpr 103 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  B  e.  ( ZZ>= `  C )
)
932, 3, 5, 7, 9, 10, 92frecuzrdglem 9197 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  ran  R )
9493, 15eleqtrrd 2117 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T
)
95 funopfv 5213 . . . . . . 7  |-  ( Fun 
T  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T  ->  ( T `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9619, 95syl 14 . . . . . 6  |-  ( ph  ->  ( <. B ,  ( 2nd `  ( R `
 ( `' G `  B ) ) )
>.  e.  T  ->  ( T `  B )  =  ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
9796adantr 261 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T  ->  ( T `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9894, 97mpd 13 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  B )  =  ( 2nd `  ( R `
 ( `' G `  B ) ) ) )
9998eqcomd 2045 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  =  ( T `  B ) )
10029, 99oveq12d 5530 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  =  ( B F ( T `  B ) ) )
10140, 91, 1003eqtrd 2076 1  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393   _Vcvv 2557   <.cop 3378    |-> cmpt 3818   suc csuc 4102   omcom 4313    X. cxp 4343   `'ccnv 4344   ran crn 4346   Fun wfun 4896    Fn wfn 4897   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   2ndc2nd 5766  freccfrec 5977   1c1 6890    + caddc 6892   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474
This theorem is referenced by:  iseqp1  9225
  Copyright terms: Public domain W3C validator