ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem3 Unicode version

Theorem frecsuclem3 5990
Description: Lemma for frecsuc 5991. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frecsuclem3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  ( F `  (frec ( F ,  A ) `
 B ) ) )
Distinct variable groups:    A, g, m, x, z    B, g, m, x, z    g, F, m, x, z    g, G, m, x, z    g, V, m, x
Allowed substitution hint:    V( z)

Proof of Theorem frecsuclem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2040 . . . . . . . . . . . . 13  |- recs ( G )  = recs ( G )
2 frecsuclem1.h . . . . . . . . . . . . . 14  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
32frectfr 5985 . . . . . . . . . . . . 13  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
41, 3tfri1d 5949 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> recs ( G )  Fn  On )
5 fnfun 4996 . . . . . . . . . . . 12  |-  (recs ( G )  Fn  On  ->  Fun recs ( G ) )
64, 5syl 14 . . . . . . . . . . 11  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  Fun recs ( G ) )
763adant3 924 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  Fun recs ( G
) )
8 peano2 4318 . . . . . . . . . . 11  |-  ( B  e.  om  ->  suc  B  e.  om )
983ad2ant3 927 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  suc  B  e.  om )
10 resfunexg 5382 . . . . . . . . . 10  |-  ( ( Fun recs ( G )  /\  suc  B  e. 
om )  ->  (recs ( G )  |`  suc  B
)  e.  _V )
117, 9, 10syl2anc 391 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (recs ( G )  |`  suc  B )  e.  _V )
12 simp1 904 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  A. z ( F `
 z )  e. 
_V )
13 simp2 905 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  A  e.  V
)
1411, 12, 13frecabex 5984 . . . . . . . 8  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  { x  |  ( E. m  e. 
om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  _V )
15 dmeq 4535 . . . . . . . . . . . . . . . . 17  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  dom  g  =  dom  (recs ( G )  |`  suc  B ) )
1615eqeq1d 2048 . . . . . . . . . . . . . . . 16  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( dom  g  =  suc  m  <->  dom  (recs ( G )  |`  suc  B
)  =  suc  m
) )
17 fveq1 5177 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( g `  m )  =  ( (recs ( G )  |`  suc  B ) `  m ) )
1817fveq2d 5182 . . . . . . . . . . . . . . . . 17  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( F `  ( g `  m
) )  =  ( F `  ( (recs ( G )  |`  suc  B ) `  m
) ) )
1918eleq2d 2107 . . . . . . . . . . . . . . . 16  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( x  e.  ( F `  (
g `  m )
)  <->  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) )
2016, 19anbi12d 442 . . . . . . . . . . . . . . 15  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )  <-> 
( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) )
2120rexbidv 2327 . . . . . . . . . . . . . 14  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) )
2215eqeq1d 2048 . . . . . . . . . . . . . . 15  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( dom  g  =  (/)  <->  dom  (recs ( G )  |`  suc  B )  =  (/) ) )
2322anbi1d 438 . . . . . . . . . . . . . 14  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <->  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A ) ) )
2421, 23orbi12d 707 . . . . . . . . . . . . 13  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) ) )
2524abbidv 2155 . . . . . . . . . . . 12  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } )
2625, 2fvmptg 5248 . . . . . . . . . . 11  |-  ( ( (recs ( G )  |`  suc  B )  e. 
_V  /\  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  _V )  ->  ( G `
 (recs ( G )  |`  suc  B ) )  =  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } )
2726ex 108 . . . . . . . . . 10  |-  ( (recs ( G )  |`  suc  B )  e.  _V  ->  ( { x  |  ( E. m  e. 
om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  _V  ->  ( G `  (recs ( G )  |`  suc  B ) )  =  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } ) )
2811, 27syl 14 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  _V  ->  ( G `  (recs ( G )  |`  suc  B ) )  =  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } ) )
292frecsuclem1 5987 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  ( G `  (recs ( G )  |`  suc  B
) ) )
3029eqeq1d 2048 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( (frec ( F ,  A ) `
 suc  B )  =  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  <->  ( G `  (recs ( G )  |`  suc  B ) )  =  { x  |  ( E. m  e. 
om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } ) )
3128, 30sylibrd 158 . . . . . . . 8  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  _V  ->  (frec ( F ,  A ) `  suc  B )  =  {
x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) } ) )
3214, 31mpd 13 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  {
x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) } )
3332abeq2d 2150 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( x  e.  (frec ( F ,  A ) `  suc  B )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) ) )
342frecsuclemdm 5988 . . . . . . . . . . 11  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  dom  (recs ( G )  |`  suc  B
)  =  suc  B
)
35 peano3 4319 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  suc  B  =/=  (/) )
36353ad2ant3 927 . . . . . . . . . . 11  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  suc  B  =/=  (/) )
3734, 36eqnetrd 2229 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  dom  (recs ( G )  |`  suc  B
)  =/=  (/) )
3837neneqd 2226 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  -.  dom  (recs ( G )  |`  suc  B
)  =  (/) )
3938intnanrd 841 . . . . . . . 8  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  -.  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A ) )
40 biorf 663 . . . . . . . 8  |-  ( -.  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  ( ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
)  \/  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  <->  ( ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
)  \/  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) ) )
42 orcom 647 . . . . . . 7  |-  ( ( ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A )  \/  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) ) )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) )
4341, 42syl6bb 185 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) ) )
4434eqeq1d 2048 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  <->  suc 
B  =  suc  m
) )
45 vex 2560 . . . . . . . . . . . 12  |-  m  e. 
_V
46 suc11g 4281 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  m  e.  _V )  ->  ( suc  B  =  suc  m  <->  B  =  m ) )
4745, 46mpan2 401 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( suc  B  =  suc  m  <->  B  =  m ) )
48473ad2ant3 927 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( suc  B  =  suc  m  <->  B  =  m ) )
4944, 48bitrd 177 . . . . . . . . 9  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  <->  B  =  m ) )
50 eqcom 2042 . . . . . . . . 9  |-  ( B  =  m  <->  m  =  B )
5149, 50syl6bb 185 . . . . . . . 8  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  <->  m  =  B ) )
5251anbi1d 438 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  <-> 
( m  =  B  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `  m
) ) ) ) )
5352rexbidv 2327 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  <->  E. m  e.  om  ( m  =  B  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) ) ) )
5433, 43, 533bitr2d 205 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( x  e.  (frec ( F ,  A ) `  suc  B )  <->  E. m  e.  om  ( m  =  B  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) )
55 fveq2 5178 . . . . . . . 8  |-  ( m  =  B  ->  (
(recs ( G )  |`  suc  B ) `  m )  =  ( (recs ( G )  |`  suc  B ) `  B ) )
5655fveq2d 5182 . . . . . . 7  |-  ( m  =  B  ->  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
)  =  ( F `
 ( (recs ( G )  |`  suc  B
) `  B )
) )
5756eleq2d 2107 . . . . . 6  |-  ( m  =  B  ->  (
x  e.  ( F `
 ( (recs ( G )  |`  suc  B
) `  m )
)  <->  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  B )
) ) )
5857ceqsrexbv 2675 . . . . 5  |-  ( E. m  e.  om  (
m  =  B  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  ( B  e. 
om  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `  B
) ) ) )
5954, 58syl6bb 185 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( x  e.  (frec ( F ,  A ) `  suc  B )  <->  ( B  e. 
om  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `  B
) ) ) ) )
60593anibar 1072 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( x  e.  (frec ( F ,  A ) `  suc  B )  <->  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  B )
) ) )
6160eqrdv 2038 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  ( F `  ( (recs ( G )  |`  suc  B ) `  B
) ) )
622frecsuclem2 5989 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( (recs ( G )  |`  suc  B
) `  B )  =  (frec ( F ,  A ) `  B
) )
6362fveq2d 5182 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( F `  ( (recs ( G )  |`  suc  B ) `  B ) )  =  ( F `  (frec ( F ,  A ) `
 B ) ) )
6461, 63eqtrd 2072 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  ( F `  (frec ( F ,  A ) `
 B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026    =/= wne 2204   E.wrex 2307   _Vcvv 2557   (/)c0 3224    |-> cmpt 3818   Oncon0 4100   suc csuc 4102   omcom 4313   dom cdm 4345    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902  recscrecs 5919  freccfrec 5977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920  df-frec 5978
This theorem is referenced by:  frecsuc  5991
  Copyright terms: Public domain W3C validator