ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw2 Unicode version

Theorem f1opw2 5706
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 5707 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1  |-  ( ph  ->  F : A -1-1-onto-> B )
f1opw2.2  |-  ( ph  ->  ( `' F "
a )  e.  _V )
f1opw2.3  |-  ( ph  ->  ( F " b
)  e.  _V )
Assertion
Ref Expression
f1opw2  |-  ( ph  ->  ( b  e.  ~P A  |->  ( F "
b ) ) : ~P A -1-1-onto-> ~P B )
Distinct variable groups:    a, b, A    B, a, b    F, a, b    ph, a, b

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2040 . 2  |-  ( b  e.  ~P A  |->  ( F " b ) )  =  ( b  e.  ~P A  |->  ( F " b ) )
2 imassrn 4679 . . . . 5  |-  ( F
" b )  C_  ran  F
3 f1opw2.1 . . . . . . 7  |-  ( ph  ->  F : A -1-1-onto-> B )
4 f1ofo 5133 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  F : A -onto-> B
)
6 forn 5109 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
75, 6syl 14 . . . . 5  |-  ( ph  ->  ran  F  =  B )
82, 7syl5sseq 2993 . . . 4  |-  ( ph  ->  ( F " b
)  C_  B )
9 f1opw2.3 . . . . 5  |-  ( ph  ->  ( F " b
)  e.  _V )
10 elpwg 3367 . . . . 5  |-  ( ( F " b )  e.  _V  ->  (
( F " b
)  e.  ~P B  <->  ( F " b ) 
C_  B ) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( ( F "
b )  e.  ~P B 
<->  ( F " b
)  C_  B )
)
128, 11mpbird 156 . . 3  |-  ( ph  ->  ( F " b
)  e.  ~P B
)
1312adantr 261 . 2  |-  ( (
ph  /\  b  e.  ~P A )  ->  ( F " b )  e. 
~P B )
14 imassrn 4679 . . . . 5  |-  ( `' F " a ) 
C_  ran  `' F
15 dfdm4 4527 . . . . . 6  |-  dom  F  =  ran  `' F
16 f1odm 5130 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
173, 16syl 14 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
1815, 17syl5eqr 2086 . . . . 5  |-  ( ph  ->  ran  `' F  =  A )
1914, 18syl5sseq 2993 . . . 4  |-  ( ph  ->  ( `' F "
a )  C_  A
)
20 f1opw2.2 . . . . 5  |-  ( ph  ->  ( `' F "
a )  e.  _V )
21 elpwg 3367 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
2220, 21syl 14 . . . 4  |-  ( ph  ->  ( ( `' F " a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
2319, 22mpbird 156 . . 3  |-  ( ph  ->  ( `' F "
a )  e.  ~P A )
2423adantr 261 . 2  |-  ( (
ph  /\  a  e.  ~P B )  ->  ( `' F " a )  e.  ~P A )
25 elpwi 3368 . . . . . . 7  |-  ( a  e.  ~P B  -> 
a  C_  B )
2625adantl 262 . . . . . 6  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  a  C_  B )
27 foimacnv 5144 . . . . . 6  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
285, 26, 27syl2an 273 . . . . 5  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( F "
( `' F "
a ) )  =  a )
2928eqcomd 2045 . . . 4  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  a  =  ( F " ( `' F " a ) ) )
30 imaeq2 4664 . . . . 5  |-  ( b  =  ( `' F " a )  ->  ( F " b )  =  ( F " ( `' F " a ) ) )
3130eqeq2d 2051 . . . 4  |-  ( b  =  ( `' F " a )  ->  (
a  =  ( F
" b )  <->  a  =  ( F " ( `' F " a ) ) ) )
3229, 31syl5ibrcom 146 . . 3  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( b  =  ( `' F "
a )  ->  a  =  ( F "
b ) ) )
33 f1of1 5125 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
343, 33syl 14 . . . . . 6  |-  ( ph  ->  F : A -1-1-> B
)
35 elpwi 3368 . . . . . . 7  |-  ( b  e.  ~P A  -> 
b  C_  A )
3635adantr 261 . . . . . 6  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  b  C_  A )
37 f1imacnv 5143 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  b  C_  A )  ->  ( `' F " ( F " b
) )  =  b )
3834, 36, 37syl2an 273 . . . . 5  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( `' F " ( F " b
) )  =  b )
3938eqcomd 2045 . . . 4  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  b  =  ( `' F " ( F
" b ) ) )
40 imaeq2 4664 . . . . 5  |-  ( a  =  ( F "
b )  ->  ( `' F " a )  =  ( `' F " ( F " b
) ) )
4140eqeq2d 2051 . . . 4  |-  ( a  =  ( F "
b )  ->  (
b  =  ( `' F " a )  <-> 
b  =  ( `' F " ( F
" b ) ) ) )
4239, 41syl5ibrcom 146 . . 3  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( a  =  ( F " b
)  ->  b  =  ( `' F " a ) ) )
4332, 42impbid 120 . 2  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( b  =  ( `' F "
a )  <->  a  =  ( F " b ) ) )
441, 13, 24, 43f1o2d 5705 1  |-  ( ph  ->  ( b  e.  ~P A  |->  ( F "
b ) ) : ~P A -1-1-onto-> ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557    C_ wss 2917   ~Pcpw 3359    |-> cmpt 3818   `'ccnv 4344   dom cdm 4345   ran crn 4346   "cima 4348   -1-1->wf1 4899   -onto->wfo 4900   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by:  f1opw  5707
  Copyright terms: Public domain W3C validator