ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdv Unicode version

Theorem eqbrrdv 4437
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
eqbrrdv.1  |-  ( ph  ->  Rel  A )
eqbrrdv.2  |-  ( ph  ->  Rel  B )
eqbrrdv.3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
Assertion
Ref Expression
eqbrrdv  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y

Proof of Theorem eqbrrdv
StepHypRef Expression
1 eqbrrdv.3 . . . 4  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
2 df-br 3765 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 3765 . . . 4  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
41, 2, 33bitr3g 211 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
54alrimivv 1755 . 2  |-  ( ph  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
6 eqbrrdv.1 . . 3  |-  ( ph  ->  Rel  A )
7 eqbrrdv.2 . . 3  |-  ( ph  ->  Rel  B )
8 eqrel 4429 . . 3  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
96, 7, 8syl2anc 391 . 2  |-  ( ph  ->  ( A  =  B  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B ) ) )
105, 9mpbird 156 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  eqbrrdva  4505
  Copyright terms: Public domain W3C validator