ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0enq Unicode version

Theorem enq0enq 6529
Description: Equivalence on positive fractions in terms of equivalence on non-negative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0enq  |-  ~Q  =  ( ~Q0  i^i  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )

Proof of Theorem enq0enq
Dummy variables  v  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 6522 . . 3  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
2 df-xp 4351 . . 3  |-  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  =  { <. x ,  y >.  |  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) }
31, 2ineq12i 3136 . 2  |-  ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }  i^i  { <. x ,  y >.  |  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) } )
4 inopab 4468 . 2  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }  i^i  { <. x ,  y >.  |  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) } )  =  { <. x ,  y
>.  |  ( (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) }
5 an32 496 . . . . . 6  |-  ( ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  <->  ( (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
6 an4 520 . . . . . . . 8  |-  ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) )  <->  ( (
x  e.  ( om 
X.  N. )  /\  x  e.  ( N.  X.  N. ) )  /\  (
y  e.  ( om 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) )
7 pinn 6407 . . . . . . . . . . . . 13  |-  ( x  e.  N.  ->  x  e.  om )
87ssriv 2949 . . . . . . . . . . . 12  |-  N.  C_  om
9 xpss1 4448 . . . . . . . . . . . 12  |-  ( N.  C_  om  ->  ( N.  X.  N. )  C_  ( om  X.  N. ) )
108, 9ax-mp 7 . . . . . . . . . . 11  |-  ( N. 
X.  N. )  C_  ( om  X.  N. )
1110sseli 2941 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  ->  x  e.  ( om  X.  N. ) )
1211pm4.71ri 372 . . . . . . . . 9  |-  ( x  e.  ( N.  X.  N. )  <->  ( x  e.  ( om  X.  N. )  /\  x  e.  ( N.  X.  N. )
) )
1310sseli 2941 . . . . . . . . . 10  |-  ( y  e.  ( N.  X.  N. )  ->  y  e.  ( om  X.  N. ) )
1413pm4.71ri 372 . . . . . . . . 9  |-  ( y  e.  ( N.  X.  N. )  <->  ( y  e.  ( om  X.  N. )  /\  y  e.  ( N.  X.  N. )
) )
1512, 14anbi12i 433 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  <->  ( (
x  e.  ( om 
X.  N. )  /\  x  e.  ( N.  X.  N. ) )  /\  (
y  e.  ( om 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) )
166, 15bitr4i 176 . . . . . . 7  |-  ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) )  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) )
1716anbi1i 431 . . . . . 6  |-  ( ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
185, 17bitri 173 . . . . 5  |-  ( ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  <->  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
19 eleq1 2100 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  <. z ,  w >.  ->  ( x  e.  ( N.  X.  N. ) 
<-> 
<. z ,  w >.  e.  ( N.  X.  N. ) ) )
20 opelxp 4374 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
z ,  w >.  e.  ( N.  X.  N. ) 
<->  ( z  e.  N.  /\  w  e.  N. )
)
2119, 20syl6bb 185 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. z ,  w >.  ->  ( x  e.  ( N.  X.  N. ) 
<->  ( z  e.  N.  /\  w  e.  N. )
) )
22 eleq1 2100 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  <. v ,  u >.  ->  ( y  e.  ( N.  X.  N. ) 
<-> 
<. v ,  u >.  e.  ( N.  X.  N. ) ) )
23 opelxp 4374 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
v ,  u >.  e.  ( N.  X.  N. ) 
<->  ( v  e.  N.  /\  u  e.  N. )
)
2422, 23syl6bb 185 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  <. v ,  u >.  ->  ( y  e.  ( N.  X.  N. ) 
<->  ( v  e.  N.  /\  u  e.  N. )
) )
2521, 24bi2anan9 538 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  ->  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  <->  ( (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
) ) )
2625pm5.32i 427 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  <->  ( (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
) ) )
2726anbi1i 431 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
) )  /\  (
z  .o  u )  =  ( w  .o  v ) ) )
28 anass 381 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
) )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .o  u )  =  ( w  .o  v ) ) ) )
2927, 28bitri 173 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .o  u )  =  ( w  .o  v ) ) ) )
30 mulpiord 6415 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  =  ( z  .o  u ) )
31 mulpiord 6415 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  =  ( w  .o  v ) )
3230, 31eqeqan12d 2055 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  u )  =  ( w  .N  v )  <->  ( z  .o  u )  =  ( w  .o  v ) ) )
3332an42s 523 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  =  ( w  .N  v )  <->  ( z  .o  u )  =  ( w  .o  v ) ) )
3433pm5.32i 427 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .N  u )  =  ( w  .N  v ) )  <->  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .o  u )  =  ( w  .o  v ) ) )
3534anbi2i 430 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .N  u )  =  ( w  .N  v ) ) )  <->  ( (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .o  u )  =  ( w  .o  v ) ) ) )
3629, 35bitr4i 176 . . . . . . . . . . . . 13  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .N  u )  =  ( w  .N  v ) ) ) )
37 anass 381 . . . . . . . . . . . . 13  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
) )  /\  (
z  .N  u )  =  ( w  .N  v ) )  <->  ( (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( z  .N  u )  =  ( w  .N  v ) ) ) )
3836, 37bitr4i 176 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
) )  /\  (
z  .N  u )  =  ( w  .N  v ) ) )
3926anbi1i 431 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .N  u
)  =  ( w  .N  v ) )  <-> 
( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
) )  /\  (
z  .N  u )  =  ( w  .N  v ) ) )
4038, 39bitr4i 176 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .N  u )  =  ( w  .N  v
) ) )
41 ancom 253 . . . . . . . . . . . 12  |-  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  <->  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
4241anbi1i 431 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. ) )  /\  (
z  .o  u )  =  ( w  .o  v ) ) )
4341anbi1i 431 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  /\  ( z  .N  u
)  =  ( w  .N  v ) )  <-> 
( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. ) )  /\  (
z  .N  u )  =  ( w  .N  v ) ) )
4440, 42, 433bitr3i 199 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )
)  /\  ( z  .o  u )  =  ( w  .o  v ) )  <->  ( ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. ) )  /\  (
z  .N  u )  =  ( w  .N  v ) ) )
45 anass 381 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )
)  /\  ( z  .o  u )  =  ( w  .o  v ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
46 anass 381 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )
)  /\  ( z  .N  u )  =  ( w  .N  v ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u )  =  ( w  .N  v
) ) ) )
4744, 45, 463bitr3i 199 . . . . . . . . 9  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u )  =  ( w  .N  v
) ) ) )
48472exbii 1497 . . . . . . . 8  |-  ( E. v E. u ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  E. v E. u
( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( (
x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u )  =  ( w  .N  v
) ) ) )
49 19.42vv 1788 . . . . . . . 8  |-  ( E. v E. u ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
50 19.42vv 1788 . . . . . . . 8  |-  ( E. v E. u ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u )  =  ( w  .N  v
) ) ) )
5148, 49, 503bitr3i 199 . . . . . . 7  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u )  =  ( w  .N  v
) ) ) )
52512exbii 1497 . . . . . 6  |-  ( E. z E. w ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  E. z E. w
( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) )
53 19.42vv 1788 . . . . . 6  |-  ( E. z E. w ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
54 19.42vv 1788 . . . . . 6  |-  ( E. z E. w ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) )
5552, 53, 543bitr3i 199 . . . . 5  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) )
5618, 55bitri 173 . . . 4  |-  ( ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  <->  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) )
5756opabbii 3824 . . 3  |-  { <. x ,  y >.  |  ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
58 df-enq 6445 . . 3  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
5957, 58eqtr4i 2063 . 2  |-  { <. x ,  y >.  |  ( ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  /\  ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) }  =  ~Q
603, 4, 593eqtrri 2065 1  |-  ~Q  =  ( ~Q0  i^i  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393    i^i cin 2916    C_ wss 2917   <.cop 3378   {copab 3817   omcom 4313    X. cxp 4343  (class class class)co 5512    .o comu 5999   N.cnpi 6370    .N cmi 6372    ~Q ceq 6377   ~Q0 ceq0 6384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-res 4357  df-iota 4867  df-fv 4910  df-ov 5515  df-ni 6402  df-mi 6404  df-enq 6445  df-enq0 6522
This theorem is referenced by:  nqnq0pi  6536
  Copyright terms: Public domain W3C validator