Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcriota Unicode version

Theorem bdcriota 10003
Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
Hypotheses
Ref Expression
bdcriota.bd  |- BOUNDED  ph
bdcriota.ex  |-  E! x  e.  y  ph
Assertion
Ref Expression
bdcriota  |- BOUNDED  ( iota_ x  e.  y 
ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdcriota
Dummy variables  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdcriota.bd . . . . . . . . 9  |- BOUNDED  ph
21ax-bdsb 9942 . . . . . . . 8  |- BOUNDED  [ z  /  x ] ph
3 ax-bdel 9941 . . . . . . . 8  |- BOUNDED  t  e.  z
42, 3ax-bdim 9934 . . . . . . 7  |- BOUNDED  ( [ z  /  x ] ph  ->  t  e.  z )
54ax-bdal 9938 . . . . . 6  |- BOUNDED  A. z  e.  y  ( [ z  /  x ] ph  ->  t  e.  z )
6 df-ral 2311 . . . . . . . . 9  |-  ( A. z  e.  y  ( [ z  /  x ] ph  ->  t  e.  z )  <->  A. z
( z  e.  y  ->  ( [ z  /  x ] ph  ->  t  e.  z ) ) )
7 impexp 250 . . . . . . . . . . 11  |-  ( ( ( z  e.  y  /\  [ z  /  x ] ph )  -> 
t  e.  z )  <-> 
( z  e.  y  ->  ( [ z  /  x ] ph  ->  t  e.  z ) ) )
87bicomi 123 . . . . . . . . . 10  |-  ( ( z  e.  y  -> 
( [ z  /  x ] ph  ->  t  e.  z ) )  <->  ( (
z  e.  y  /\  [ z  /  x ] ph )  ->  t  e.  z ) )
98albii 1359 . . . . . . . . 9  |-  ( A. z ( z  e.  y  ->  ( [
z  /  x ] ph  ->  t  e.  z ) )  <->  A. z
( ( z  e.  y  /\  [ z  /  x ] ph )  ->  t  e.  z ) )
106, 9bitri 173 . . . . . . . 8  |-  ( A. z  e.  y  ( [ z  /  x ] ph  ->  t  e.  z )  <->  A. z
( ( z  e.  y  /\  [ z  /  x ] ph )  ->  t  e.  z ) )
11 sban 1829 . . . . . . . . . . . 12  |-  ( [ z  /  x ]
( x  e.  y  /\  ph )  <->  ( [
z  /  x ]
x  e.  y  /\  [ z  /  x ] ph ) )
12 clelsb3 2142 . . . . . . . . . . . . 13  |-  ( [ z  /  x ]
x  e.  y  <->  z  e.  y )
1312anbi1i 431 . . . . . . . . . . . 12  |-  ( ( [ z  /  x ] x  e.  y  /\  [ z  /  x ] ph )  <->  ( z  e.  y  /\  [ z  /  x ] ph ) )
1411, 13bitri 173 . . . . . . . . . . 11  |-  ( [ z  /  x ]
( x  e.  y  /\  ph )  <->  ( z  e.  y  /\  [ z  /  x ] ph ) )
1514bicomi 123 . . . . . . . . . 10  |-  ( ( z  e.  y  /\  [ z  /  x ] ph )  <->  [ z  /  x ] ( x  e.  y  /\  ph )
)
1615imbi1i 227 . . . . . . . . 9  |-  ( ( ( z  e.  y  /\  [ z  /  x ] ph )  -> 
t  e.  z )  <-> 
( [ z  /  x ] ( x  e.  y  /\  ph )  ->  t  e.  z ) )
1716albii 1359 . . . . . . . 8  |-  ( A. z ( ( z  e.  y  /\  [
z  /  x ] ph )  ->  t  e.  z )  <->  A. z
( [ z  /  x ] ( x  e.  y  /\  ph )  ->  t  e.  z ) )
1810, 17bitri 173 . . . . . . 7  |-  ( A. z  e.  y  ( [ z  /  x ] ph  ->  t  e.  z )  <->  A. z
( [ z  /  x ] ( x  e.  y  /\  ph )  ->  t  e.  z ) )
19 df-clab 2027 . . . . . . . . . 10  |-  ( z  e.  { x  |  ( x  e.  y  /\  ph ) }  <->  [ z  /  x ] ( x  e.  y  /\  ph )
)
2019bicomi 123 . . . . . . . . 9  |-  ( [ z  /  x ]
( x  e.  y  /\  ph )  <->  z  e.  { x  |  ( x  e.  y  /\  ph ) } )
2120imbi1i 227 . . . . . . . 8  |-  ( ( [ z  /  x ] ( x  e.  y  /\  ph )  ->  t  e.  z )  <-> 
( z  e.  {
x  |  ( x  e.  y  /\  ph ) }  ->  t  e.  z ) )
2221albii 1359 . . . . . . 7  |-  ( A. z ( [ z  /  x ] ( x  e.  y  /\  ph )  ->  t  e.  z )  <->  A. z
( z  e.  {
x  |  ( x  e.  y  /\  ph ) }  ->  t  e.  z ) )
2318, 22bitri 173 . . . . . 6  |-  ( A. z  e.  y  ( [ z  /  x ] ph  ->  t  e.  z )  <->  A. z
( z  e.  {
x  |  ( x  e.  y  /\  ph ) }  ->  t  e.  z ) )
245, 23bd0 9944 . . . . 5  |- BOUNDED  A. z ( z  e.  { x  |  ( x  e.  y  /\  ph ) }  ->  t  e.  z )
2524bdcab 9969 . . . 4  |- BOUNDED  { t  |  A. z ( z  e. 
{ x  |  ( x  e.  y  /\  ph ) }  ->  t  e.  z ) }
26 df-int 3616 . . . 4  |-  |^| { x  |  ( x  e.  y  /\  ph ) }  =  { t  |  A. z ( z  e.  { x  |  ( x  e.  y  /\  ph ) }  ->  t  e.  z ) }
2725, 26bdceqir 9964 . . 3  |- BOUNDED 
|^| { x  |  ( x  e.  y  /\  ph ) }
28 bdcriota.ex . . . . 5  |-  E! x  e.  y  ph
29 df-reu 2313 . . . . 5  |-  ( E! x  e.  y  ph  <->  E! x ( x  e.  y  /\  ph )
)
3028, 29mpbi 133 . . . 4  |-  E! x
( x  e.  y  /\  ph )
31 iotaint 4880 . . . 4  |-  ( E! x ( x  e.  y  /\  ph )  ->  ( iota x ( x  e.  y  /\  ph ) )  =  |^| { x  |  ( x  e.  y  /\  ph ) } )
3230, 31ax-mp 7 . . 3  |-  ( iota
x ( x  e.  y  /\  ph )
)  =  |^| { x  |  ( x  e.  y  /\  ph ) }
3327, 32bdceqir 9964 . 2  |- BOUNDED  ( iota x ( x  e.  y  /\  ph ) )
34 df-riota 5468 . 2  |-  ( iota_ x  e.  y  ph )  =  ( iota x
( x  e.  y  /\  ph ) )
3533, 34bdceqir 9964 1  |- BOUNDED  ( iota_ x  e.  y 
ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393   [wsb 1645   E!weu 1900   {cab 2026   A.wral 2306   E!wreu 2308   |^|cint 3615   iotacio 4865   iota_crio 5467  BOUNDED wbd 9932  BOUNDED wbdc 9960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bd0 9933  ax-bdim 9934  ax-bdal 9938  ax-bdel 9941  ax-bdsb 9942
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-iota 4867  df-riota 5468  df-bdc 9961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator