ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exeu Unicode version

Theorem 2exeu 1992
Description: Double existential uniqueness implies double uniqueness quantification. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2exeu  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  ->  E! x E! y ph )

Proof of Theorem 2exeu
StepHypRef Expression
1 excom 1554 . . . . 5  |-  ( E. y E. x ph  <->  E. x E. y ph )
2 hbe1 1384 . . . . . . . 8  |-  ( E. x ph  ->  A. x E. x ph )
32hbmo 1939 . . . . . . 7  |-  ( E* y E. x ph  ->  A. x E* y E. x ph )
4319.41h 1575 . . . . . 6  |-  ( E. x ( E. y ph  /\  E* y E. x ph )  <->  ( E. x E. y ph  /\  E* y E. x ph ) )
5 19.8a 1482 . . . . . . . . 9  |-  ( ph  ->  E. x ph )
65moimi 1965 . . . . . . . 8  |-  ( E* y E. x ph  ->  E* y ph )
76anim2i 324 . . . . . . 7  |-  ( ( E. y ph  /\  E* y E. x ph )  ->  ( E. y ph  /\  E* y ph ) )
87eximi 1491 . . . . . 6  |-  ( E. x ( E. y ph  /\  E* y E. x ph )  ->  E. x ( E. y ph  /\  E* y ph ) )
94, 8sylbir 125 . . . . 5  |-  ( ( E. x E. y ph  /\  E* y E. x ph )  ->  E. x ( E. y ph  /\  E* y ph ) )
101, 9sylanb 268 . . . 4  |-  ( ( E. y E. x ph  /\  E* y E. x ph )  ->  E. x ( E. y ph  /\  E* y ph ) )
11 simpl 102 . . . . . 6  |-  ( ( E. y ph  /\  E* y ph )  ->  E. y ph )
1211moimi 1965 . . . . 5  |-  ( E* x E. y ph  ->  E* x ( E. y ph  /\  E* y ph ) )
1312adantl 262 . . . 4  |-  ( ( E. x E. y ph  /\  E* x E. y ph )  ->  E* x ( E. y ph  /\  E* y ph ) )
1410, 13anim12i 321 . . 3  |-  ( ( ( E. y E. x ph  /\  E* y E. x ph )  /\  ( E. x E. y ph  /\  E* x E. y ph ) )  ->  ( E. x
( E. y ph  /\ 
E* y ph )  /\  E* x ( E. y ph  /\  E* y ph ) ) )
1514ancoms 255 . 2  |-  ( ( ( E. x E. y ph  /\  E* x E. y ph )  /\  ( E. y E. x ph  /\  E* y E. x ph ) )  ->  ( E. x
( E. y ph  /\ 
E* y ph )  /\  E* x ( E. y ph  /\  E* y ph ) ) )
16 eu5 1947 . . 3  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
17 eu5 1947 . . 3  |-  ( E! y E. x ph  <->  ( E. y E. x ph  /\  E* y E. x ph ) )
1816, 17anbi12i 433 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( ( E. x E. y ph  /\ 
E* x E. y ph )  /\  ( E. y E. x ph  /\ 
E* y E. x ph ) ) )
19 eu5 1947 . . 3  |-  ( E! x E! y ph  <->  ( E. x E! y
ph  /\  E* x E! y ph ) )
20 eu5 1947 . . . . 5  |-  ( E! y ph  <->  ( E. y ph  /\  E* y ph ) )
2120exbii 1496 . . . 4  |-  ( E. x E! y ph  <->  E. x ( E. y ph  /\  E* y ph ) )
2220mobii 1937 . . . 4  |-  ( E* x E! y ph  <->  E* x ( E. y ph  /\  E* y ph ) )
2321, 22anbi12i 433 . . 3  |-  ( ( E. x E! y
ph  /\  E* x E! y ph )  <->  ( E. x ( E. y ph  /\  E* y ph )  /\  E* x ( E. y ph  /\  E* y ph ) ) )
2419, 23bitri 173 . 2  |-  ( E! x E! y ph  <->  ( E. x ( E. y ph  /\  E* y ph )  /\  E* x ( E. y ph  /\  E* y ph ) ) )
2515, 18, 243imtr4i 190 1  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  ->  E! x E! y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   E.wex 1381   E!weu 1900   E*wmo 1901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator