ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr Unicode version

Theorem 1idsr 6853
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )

Proof of Theorem 1idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6812 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5519 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
1R )  =  ( A  .R  1R )
)
3 id 19 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2054 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  .R  1R )  =  A
) )
5 df-1r 6817 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
65oveq2i 5523 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  1R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
7 1pr 6652 . . . . . 6  |-  1P  e.  P.
8 addclpr 6635 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
97, 7, 8mp2an 402 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
10 mulsrpr 6831 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
119, 7, 10mpanr12 415 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
12 distrprg 6686 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
137, 7, 12mp3an23 1224 . . . . . . . 8  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
14 1idpr 6690 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  =  x )
1514oveq1d 5527 . . . . . . . 8  |-  ( x  e.  P.  ->  (
( x  .P.  1P )  +P.  ( x  .P.  1P ) )  =  ( x  +P.  ( x  .P.  1P ) ) )
1613, 15eqtr2d 2073 . . . . . . 7  |-  ( x  e.  P.  ->  (
x  +P.  ( x  .P.  1P ) )  =  ( x  .P.  ( 1P  +P.  1P ) ) )
17 distrprg 6686 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
187, 7, 17mp3an23 1224 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
19 1idpr 6690 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  =  y )
2019oveq1d 5527 . . . . . . . 8  |-  ( y  e.  P.  ->  (
( y  .P.  1P )  +P.  ( y  .P. 
1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2118, 20eqtrd 2072 . . . . . . 7  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2216, 21oveqan12d 5531 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) ) )
23 simpl 102 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  x  e.  P. )
24 mulclpr 6670 . . . . . . . 8  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
2523, 7, 24sylancl 392 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  1P )  e.  P. )
26 mulclpr 6670 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
279, 26mpan2 401 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )
2827adantl 262 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
29 addassprg 6677 . . . . . . 7  |-  ( ( x  e.  P.  /\  ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  +P.  (
x  .P.  1P )
)  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
3023, 25, 28, 29syl3anc 1135 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
31 mulclpr 6670 . . . . . . . 8  |-  ( ( x  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
3223, 9, 31sylancl 392 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
33 simpr 103 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  y  e.  P. )
34 mulclpr 6670 . . . . . . . 8  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
3533, 7, 34sylancl 392 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  1P )  e.  P. )
36 addcomprg 6676 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( z  +P.  w
)  =  ( w  +P.  z ) )
3736adantl 262 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  +P.  w )  =  ( w  +P.  z ) )
38 addassprg 6677 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )  ->  (
( z  +P.  w
)  +P.  v )  =  ( z  +P.  ( w  +P.  v
) ) )
3938adantl 262 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  +P.  w )  +P.  v )  =  ( z  +P.  ( w  +P.  v ) ) )
4032, 33, 35, 37, 39caov12d 5682 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
4122, 30, 403eqtr3d 2080 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
429, 31mpan2 401 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  e. 
P. )
437, 34mpan2 401 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
44 addclpr 6635 . . . . . . . . 9  |-  ( ( ( x  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P. )
4542, 43, 44syl2an 273 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) )  e.  P. )
467, 24mpan2 401 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
47 addclpr 6635 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4846, 27, 47syl2an 273 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4945, 48anim12i 321 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e.  P. )
)
50 enreceq 6821 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
)  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. ) )  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5149, 50syldan 266 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5251anidms 377 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5341, 52mpbird 156 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
5411, 53eqtr4d 2075 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. x ,  y >. ]  ~R  )
556, 54syl5eq 2084 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  )
561, 4, 55ecoptocl 6193 1  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   <.cop 3378  (class class class)co 5512   [cec 6104   P.cnp 6389   1Pc1p 6390    +P. cpp 6391    .P. cmp 6392    ~R cer 6394   R.cnr 6395   1Rc1r 6397    .R cmr 6400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-enr 6811  df-nr 6812  df-mr 6814  df-1r 6817
This theorem is referenced by:  pn0sr  6856  axi2m1  6949  ax1rid  6951  axcnre  6955
  Copyright terms: Public domain W3C validator