ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv Unicode version

Theorem 1fv 8996
Description: A one value function. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )

Proof of Theorem 1fv
StepHypRef Expression
1 0z 8256 . . . . . 6  |-  0  e.  ZZ
2 f1osng 5167 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
31, 2mpan 400 . . . . 5  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
4 f1ofo 5133 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  {
<. 0 ,  N >. } : { 0 } -onto-> { N } )
5 dffo2 5110 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  <->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
65biimpi 113 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  ->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
7 fzsn 8929 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
81, 7ax-mp 7 . . . . . . . . . . . 12  |-  ( 0 ... 0 )  =  { 0 }
98eqcomi 2044 . . . . . . . . . . 11  |-  { 0 }  =  ( 0 ... 0 )
109feq2i 5040 . . . . . . . . . 10  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  <->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
1110biimpi 113 . . . . . . . . 9  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
12 snssi 3508 . . . . . . . . 9  |-  ( N  e.  V  ->  { N }  C_  V )
13 fss 5054 . . . . . . . . 9  |-  ( ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N }  /\  { N }  C_  V )  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1411, 12, 13syl2an 273 . . . . . . . 8  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  N  e.  V
)  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1514ex 108 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
1615adantr 261 . . . . . 6  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } )  ->  ( N  e.  V  ->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
174, 6, 163syl 17 . . . . 5  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
183, 17mpcom 32 . . . 4  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
19 fvsng 5359 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  ( { <. 0 ,  N >. } `  0
)  =  N )
201, 19mpan 400 . . . 4  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } `  0 )  =  N )
2118, 20jca 290 . . 3  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2221adantr 261 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( {
<. 0 ,  N >. } `  0 )  =  N ) )
23 feq1 5030 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P : ( 0 ... 0 ) --> V  <->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
24 fveq1 5177 . . . . 5  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P `  0 )  =  ( { <. 0 ,  N >. } `
 0 ) )
2524eqeq1d 2048 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P `  0
)  =  N  <->  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2623, 25anbi12d 442 . . 3  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2726adantl 262 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( ( P :
( 0 ... 0
) --> V  /\  ( P `  0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2822, 27mpbird 156 1  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393    C_ wss 2917   {csn 3375   <.cop 3378   ran crn 4346   -->wf 4898   -onto->wfo 4900   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512   0cc0 6889   ZZcz 8245   ...cfz 8874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981  ax-rnegex 6993  ax-pre-ltirr 6996  ax-pre-apti 6999
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-neg 7185  df-z 8246  df-uz 8474  df-fz 8875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator