HomeHome Higher-Order Logic Explorer
Theorem List (p. 2 of 3)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  HOLE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Higher-Order Logic Explorer - 101-200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhbov 101 Hypothesis builder for binary operation.
|- F:(be -> (ga -> de))   &   |- A:be   &   |- B:al   &   |- C:ga   &   |- R |= [(\x:al FB) = F]   &   |- R |= [(\x:al AB) = A]   &   |- R |= [(\x:al CB) = C]   =>   |- R |= [(\x:al [AFC]B) = [AFC]]
 
Theoremhbl 102* Hypothesis builder for lambda abstraction.
|- A:ga   &   |- B:al   &   |- R |= [(\x:al AB) = A]   =>   |- R |= [(\x:al \y:be AB) = \y:be A]
 
Axiomax-inst 103* Instantiate a theorem with a new term. The second and third hypotheses are the HOL equivalent of set.mm "effectively not free in" predicate (see set.mm's ax-17, or ax17 205).
|- R |= A   &   |- T. |= [(\x:al By:al) = B]   &   |- T. |= [(\x:al Sy:al) = S]   &   |- [x:al = C] |= [A = B]   &   |- [x:al = C] |= [R = S]   =>   |- S |= B
 
Theoreminsti 104* Instantiate a theorem with a new term.
|- C:al   &   |- B:*   &   |- R |= A   &   |- T. |= [(\x:al By:al) = B]   &   |- [x:al = C] |= [A = B]   =>   |- R |= B
 
Theoremclf 105* Evaluate a lambda expression.
|- A:be   &   |- C:al   &   |- [x:al = C] |= [A = B]   &   |- T. |= [(\x:al By:al) = B]   &   |- T. |= [(\x:al Cy:al) = C]   =>   |- T. |= [(\x:al AC) = B]
 
Theoremcl 106* Evaluate a lambda expression.
|- A:be   &   |- C:al   &   |- [x:al = C] |= [A = B]   =>   |- T. |= [(\x:al AC) = B]
 
Theoremovl 107* Evaluate a lambda expression in a binary operation.
|- A:ga   &   |- S:al   &   |- T:be   &   |- [x:al = S] |= [A = B]   &   |- [y:be = T] |= [B = C]   =>   |- T. |= [[S\x:al \y:be AT] = C]
 
0.2  Add propositional calculus definitions
 
Syntaxtfal 108 Contradiction term.
term F.
 
Syntaxtan 109 Conjunction term.
term /\
 
Syntaxtne 110 Negation term.
term ~
 
Syntaxtim 111 Implication term.
term ==>
 
Syntaxtal 112 For all term.
term A.
 
Syntaxtex 113 There exists term.
term E.
 
Syntaxtor 114 Disjunction term.
term \/
 
Syntaxteu 115 There exists unique term.
term E!
 
Definitiondf-al 116* Define the for all operator.
|- T. |= [A. = \p:(al -> *) [p:(al -> *) = \x:al T.]]
 
Definitiondf-fal 117 Define the constant false.
|- T. |= [F. = (A.\p:* p:*)]
 
Definitiondf-an 118* Define the 'and' operator.
|- T. |= [ /\ = \p:* \q:* [\f:(* -> (* -> *)) [p:*f:(* -> (* -> *))q:*] = \f:(* -> (* -> *)) [T.f:(* -> (* -> *))T.]]]
 
Definitiondf-im 119* Define the implication operator.
|- T. |= [ ==> = \p:* \q:* [[p:* /\ q:*] = p:*]]
 
Definitiondf-not 120 Define the negation operator.
|- T. |= [~ = \p:* [p:* ==> F.]]
 
Definitiondf-ex 121* Define the existence operator.
|- T. |= [E. = \p:(al -> *) (A.\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*])]
 
Definitiondf-or 122* Define the 'or' operator.
|- T. |= [ \/ = \p:* \q:* (A.\x:* [[p:* ==> x:*] ==> [[q:* ==> x:*] ==> x:*]])]
 
Definitiondf-eu 123* Define the 'exists unique' operator.
|- T. |= [E! = \p:(al -> *) (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]))]
 
Theoremwal 124 For all type.
|- A.:((al -> *) -> *)
 
Theoremwfal 125 Contradiction type.
|- F.:*
 
Theoremwan 126 Conjunction type.
|- /\ :(* -> (* -> *))
 
Theoremwim 127 Implication type.
|- ==> :(* -> (* -> *))
 
Theoremwnot 128 Negation type.
|- ~ :(* -> *)
 
Theoremwex 129 There exists type.
|- E.:((al -> *) -> *)
 
Theoremwor 130 Disjunction type.
|- \/ :(* -> (* -> *))
 
Theoremweu 131 There exists unique type.
|- E!:((al -> *) -> *)
 
Theoremalval 132* Value of the for all predicate.
|- F:(al -> *)   =>   |- T. |= [(A.F) = [F = \x:al T.]]
 
Theoremexval 133* Value of the 'there exists' predicate.
|- F:(al -> *)   =>   |- T. |= [(E.F) = (A.\q:* [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*])]
 
Theoremeuval 134* Value of the 'exists unique' predicate.
|- F:(al -> *)   =>   |- T. |= [(E!F) = (E.\y:al (A.\x:al [(Fx:al) = [x:al = y:al]]))]
 
Theoremnotval 135 Value of negation.
|- A:*   =>   |- T. |= [(~ A) = [A ==> F.]]
 
Theoremimval 136 Value of the implication.
|- A:*   &   |- B:*   =>   |- T. |= [[A ==> B] = [[A /\ B] = A]]
 
Theoremorval 137* Value of the disjunction.
|- A:*   &   |- B:*   =>   |- T. |= [[A \/ B] = (A.\x:* [[A ==> x:*] ==> [[B ==> x:*] ==> x:*]])]
 
Theoremanval 138* Value of the conjunction.
|- A:*   &   |- B:*   =>   |- T. |= [[A /\ B] = [\f:(* -> (* -> *)) [Af:(* -> (* -> *))B] = \f:(* -> (* -> *)) [T.f:(* -> (* -> *))T.]]]
 
Theoremax4g 139 If F is true for all x:al, then it is true for A.
|- F:(al -> *)   &   |- A:al   =>   |- (A.F) |= (FA)
 
Theoremax4 140 If A is true for all x:al, then it is true for A.
|- A:*   =>   |- (A.\x:al A) |= A
 
Theoremalrimiv 141* If one can prove R |= A where R does not contain x, then A is true for all x.
|- R |= A   =>   |- R |= (A.\x:al A)
 
Theoremcla4v 142* If A(x) is true for all x:al, then it is true for C = A(B).
|- A:*   &   |- B:al   &   |- [x:al = B] |= [A = C]   =>   |- (A.\x:al A) |= C
 
Theorempm2.21 143 A falsehood implies anything.
|- A:*   =>   |- F. |= A
 
Theoremdfan2 144 An alternative defintion of the "and" term in terms of the context conjunction.
|- A:*   &   |- B:*   =>   |- T. |= [[A /\ B] = (A, B)]
 
Theoremhbct 145 Hypothesis builder for context conjunction.
|- A:*   &   |- B:al   &   |- C:*   &   |- R |= [(\x:al AB) = A]   &   |- R |= [(\x:al CB) = C]   =>   |- R |= [(\x:al (A, C)B) = (A, C)]
 
Theoremmpd 146 Modus ponens.
|- T:*   &   |- R |= S   &   |- R |= [S ==> T]   =>   |- R |= T
 
Theoremimp 147 Importation deduction.
|- S:*   &   |- T:*   &   |- R |= [S ==> T]   =>   |- (R, S) |= T
 
Theoremex 148 Exportation deduction.
|- (R, S) |= T   =>   |- R |= [S ==> T]
 
Theoremnotval2 149 Another way two write ~ A, the negation of A.
|- A:*   =>   |- T. |= [(~ A) = [A = F.]]
 
Theoremnotnot1 150 One side of notnot 187.
|- A:*   =>   |- A |= (~ (~ A))
 
Theoremcon2d 151 A contraposition deduction.
|- T:*   &   |- (R, S) |= (~ T)   =>   |- (R, T) |= (~ S)
 
Theoremcon3d 152 A contraposition deduction.
|- (R, S) |= T   =>   |- (R, (~ T)) |= (~ S)
 
Theoremecase 153 Elimination by cases.
|- A:*   &   |- B:*   &   |- T:*   &   |- R |= [A \/ B]   &   |- (R, A) |= T   &   |- (R, B) |= T   =>   |- R |= T
 
Theoremolc 154 Or introduction.
|- A:*   &   |- B:*   =>   |- B |= [A \/ B]
 
Theoremorc 155 Or introduction.
|- A:*   &   |- B:*   =>   |- A |= [A \/ B]
 
Theoremexlimdv2 156* Existential elimination.
|- F:(al -> *)   &   |- (R, (Fx:al)) |= T   =>   |- (R, (E.F)) |= T
 
Theoremexlimdv 157* Existential elimination.
|- (R, A) |= T   =>   |- (R, (E.\x:al A)) |= T
 
Theoremax4e 158 Existential introduction.
|- F:(al -> *)   &   |- A:al   =>   |- (FA) |= (E.F)
 
Theoremcla4ev 159* Existential introduction.
|- A:*   &   |- B:al   &   |- [x:al = B] |= [A = C]   =>   |- C |= (E.\x:al A)
 
Theorem19.8a 160 Existential introduction.
|- A:*   =>   |- A |= (E.\x:al A)
 
0.3  Type definition mechanism
 
SyntaxwffMMJ2d 161 Internal axiom for mmj2 use.
wff typedef al(A, B)C
 
Syntaxwabs 162 Type of the abstraction function.
|- B:al   &   |- F:(al -> *)   &   |- T. |= (FB)   &   |- typedef be(A, R)F   =>   |- A:(al -> be)
 
Syntaxwrep 163 Type of the representation function.
|- B:al   &   |- F:(al -> *)   &   |- T. |= (FB)   &   |- typedef be(A, R)F   =>   |- R:(be -> al)
 
Axiomax-tdef 164* The type definition axiom. The last hypothesis corresponds to the actual definition one wants to make; here we are defining a new type be and the definition will provide us with pair of bijections A, R mapping the new type be to the subset of the old type al such that Fx is true. In order for this to be a valid (conservative) extension, we must ensure that the new type is non-empty, and for that purpose we need a witness B that F is not always false.
|- B:al   &   |- F:(al -> *)   &   |- T. |= (FB)   &   |- typedef be(A, R)F   =>   |- T. |= ((A.\x:be [(A(Rx:be)) = x:be]), (A.\x:al [(Fx:al) = [(R(Ax:al)) = x:al]]))
 
0.4  Extensionality
 
Axiomax-eta 165* The eta-axiom: a function is determined by its values.
|- T. |= (A.\f:(al -> be) [\x:al (f:(al -> be)x:al) = f:(al -> be)])
 
Theoremeta 166* The eta-axiom: a function is determined by its values.
|- F:(al -> be)   =>   |- T. |= [\x:al (Fx:al) = F]
 
Theoremcbvf 167* Change bound variables in a lambda abstraction.
|- A:be   &   |- T. |= [(\y:al Az:al) = A]   &   |- T. |= [(\x:al Bz:al) = B]   &   |- [x:al = y:al] |= [A = B]   =>   |- T. |= [\x:al A = \y:al B]
 
Theoremcbv 168* Change bound variables in a lambda abstraction.
|- A:be   &   |- [x:al = y:al] |= [A = B]   =>   |- T. |= [\x:al A = \y:al B]
 
Theoremleqf 169* Equality theorem for lambda abstraction, using bound variable instead of distinct variables.
|- A:be   &   |- R |= [A = B]   &   |- T. |= [(\x:al Ry:al) = R]   =>   |- R |= [\x:al A = \x:al B]
 
Theoremalrimi 170* If one can prove R |= A where R does not contain x, then A is true for all x.
|- R |= A   &   |- T. |= [(\x:al Ry:al) = R]   =>   |- R |= (A.\x:al A)
 
Theoremexlimd 171* Existential elimination.
|- (R, A) |= T   &   |- T. |= [(\x:al Ry:al) = R]   &   |- T. |= [(\x:al Ty:al) = T]   =>   |- (R, (E.\x:al A)) |= T
 
Theoremalimdv 172* Deduction from Theorem 19.20 of [Margaris] p. 90.
|- (R, A) |= B   =>   |- (R, (A.\x:al A)) |= (A.\x:al B)
 
Theoremeximdv 173* Deduction from Theorem 19.22 of [Margaris] p. 90.
|- (R, A) |= B   =>   |- (R, (E.\x:al A)) |= (E.\x:al B)
 
Theoremalnex 174* Theorem 19.7 of [Margaris] p. 89.
|- A:*   =>   |- T. |= [(A.\x:al (~ A)) = (~ (E.\x:al A))]
 
Theoremexnal1 175* Forward direction of exnal 188.
|- A:*   =>   |- (E.\x:al (~ A)) |= (~ (A.\x:al A))
 
Theoremisfree 176* Derive the metamath "is free" predicate in terms of the HOL "is free" predicate.
|- A:*   &   |- T. |= [(\x:al Ay:al) = A]   =>   |- T. |= [A ==> (A.\x:al A)]
 
0.5  Axioms of infinity and choice
 
Syntaxtf11 177 One-to-one function.
term 1-1
 
Syntaxtfo 178 Onto function.
term onto
 
Syntaxtat 179 Indefinite descriptor.
term @
 
Syntaxwat 180 The type of the indefinite descriptor.
|- @:((al -> *) -> al)
 
Definitiondf-f11 181* Define a one-to-one function.
|- T. |= [1-1 = \f:(al -> be) (A.\x:al (A.\y:al [[(f:(al -> be)x:al) = (f:(al -> be)y:al)] ==> [x:al = y:al]]))]
 
Definitiondf-fo 182* Define an onto function.
|- T. |= [onto = \f:(al -> be) (A.\y:be (E.\x:al [y:be = (f:(al -> be)x:al)]))]
 
Axiomax-ac 183* Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF.
|- T. |= (A.\p:(al -> *) (A.\x:al [(p:(al -> *)x:al) ==> (p:(al -> *)(@p:(al -> *)))]))
 
Theoremac 184 Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF.
|- F:(al -> *)   &   |- A:al   =>   |- (FA) |= (F(@F))
 
Theoremdfex2 185 Alternative definition of the "there exists" quantifier.
|- F:(al -> *)   =>   |- T. |= [(E.F) = (F(@F))]
 
Theoremexmid 186 Diaconescu's theorem, which derives the law of the excluded middle from the axiom of choice.
|- A:*   =>   |- T. |= [A \/ (~ A)]
 
Theoremnotnot 187 Rule of double negation.
|- A:*   =>   |- T. |= [A = (~ (~ A))]
 
Theoremexnal 188* Theorem 19.14 of [Margaris] p. 90.
|- A:*   =>   |- T. |= [(E.\x:al (~ A)) = (~ (A.\x:al A))]
 
Axiomax-inf 189 The axiom of infinity: the set of "individuals" is not Dedekind-finite. Using the axiom of choice, we can show that this is equivalent to an embedding of the natural numbers in iota.
|- T. |= (E.\f:(iota -> iota) [(1-1 f:(iota -> iota)) /\ (~ (onto f:(iota -> iota)))])
 
0.6  Rederive the Metamath axioms
 
Theoremax1 190 Axiom Simp. Axiom A1 of [Margaris] p. 49.
|- R:*   &   |- S:*   =>   |- T. |= [R ==> [S ==> R]]
 
Theoremax2 191 Axiom Frege. Axiom A2 of [Margaris] p. 49.
|- R:*   &   |- S:*   &   |- T:*   =>   |- T. |= [[R ==> [S ==> T]] ==> [[R ==> S] ==> [R ==> T]]]
 
Theoremax3 192 Axiom Transp. Axiom A3 of [Margaris] p. 49.
|- R:*   &   |- S:*   =>   |- T. |= [[(~ R) ==> (~ S)] ==> [S ==> R]]
 
Theoremaxmp 193 Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73.
|- S:*   &   |- T. |= R   &   |- T. |= [R ==> S]   =>   |- T. |= S
 
Theoremax5 194* Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105.
|- R:*   &   |- S:*   =>   |- T. |= [(A.\x:al [R ==> S]) ==> [(A.\x:al R) ==> (A.\x:al S)]]
 
Theoremax6 195* Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113.
|- R:*   =>   |- T. |= [(~ (A.\x:al R)) ==> (A.\x:al (~ (A.\x:al R)))]
 
Theoremax7 196* Axiom of Quantifier Commutation. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint).
|- R:*   =>   |- T. |= [(A.\x:al (A.\y:al R)) ==> (A.\y:al (A.\x:al R))]
 
Theoremaxgen 197* Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74.
|- T. |= R   =>   |- T. |= (A.\x:al R)
 
Theoremax8 198 Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105.
|- A:al   &   |- B:al   &   |- C:al   =>   |- T. |= [[A = B] ==> [[A = C] ==> [B = C]]]
 
Theoremax9 199* Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105.
|- A:al   =>   |- T. |= (~ (A.\x:al (~ [x:al = A])))
 
Theoremax10 200* Axiom of Quantifier Substitution. Appears as Lemma L12 in [Megill] p. 445 (p. 12 of the preprint).
|- T. |= [(A.\x:al [x:al = y:al]) ==> (A.\y:al [y:al = x:al])]
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100101-200 3 201-209
  Copyright terms: Public domain < Previous  Next >