Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud1lem0a GIF version

Theorem ud1lem0a 255
 Description: Introduce →1 to the left.
Hypothesis
Ref Expression
ud1lem0a.1 a = b
Assertion
Ref Expression
ud1lem0a (c1 a) = (c1 b)

Proof of Theorem ud1lem0a
StepHypRef Expression
1 ud1lem0a.1 . . . 4 a = b
21lan 77 . . 3 (ca) = (cb)
32lor 70 . 2 (c ∪ (ca)) = (c ∪ (cb))
4 df-i1 44 . 2 (c1 a) = (c ∪ (ca))
5 df-i1 44 . 2 (c1 b) = (c ∪ (cb))
63, 4, 53tr1 63 1 (c1 a) = (c1 b)
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →1 wi1 12 This theorem was proved from axioms:  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-i1 44 This theorem is referenced by:  ud1lem0ab  257  wql1  293  nom42  327  ud1  595  u3lem13b  790  2oai1u  822  1oaiii  823  oa3to4lem1  945  oa3to4lem2  946  oa4to6lem1  960  oa4to6lem2  961  oa4to6lem3  962
 Copyright terms: Public domain W3C validator