Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  u5lemc1b GIF version

Theorem u5lemc1b 685
 Description: Commutation theorem for relevance implication.
Assertion
Ref Expression
u5lemc1b b C (a5 b)

Proof of Theorem u5lemc1b
StepHypRef Expression
1 comanr2 465 . . . 4 b C (ab)
2 comanr2 465 . . . 4 b C (ab)
31, 2com2or 483 . . 3 b C ((ab) ∪ (ab))
4 comanr2 465 . . . 4 b C (ab )
54comcom6 459 . . 3 b C (ab )
63, 5com2or 483 . 2 b C (((ab) ∪ (ab)) ∪ (ab ))
7 df-i5 48 . . 3 (a5 b) = (((ab) ∪ (ab)) ∪ (ab ))
87ax-r1 35 . 2 (((ab) ∪ (ab)) ∪ (ab )) = (a5 b)
96, 8cbtr 182 1 b C (a5 b)
 Colors of variables: term Syntax hints:   C wc 3  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →5 wi5 16 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i5 48  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by:  u5lemc3  695  u5lembi  725  u5lem2  748  u5lem3  753
 Copyright terms: Public domain W3C validator