Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lem2 GIF version

Theorem u1lem2 744
 Description: Lemma for unified implication study.
Assertion
Ref Expression
u1lem2 (((a1 b) →1 a) →1 a) = 1

Proof of Theorem u1lem2
StepHypRef Expression
1 df-i1 44 . 2 (((a1 b) →1 a) →1 a) = (((a1 b) →1 a) ∪ (((a1 b) →1 a) ∩ a))
2 u1lem1n 739 . . . 4 ((a1 b) →1 a) = a
3 u1lem1 734 . . . . . 6 ((a1 b) →1 a) = a
43ran 78 . . . . 5 (((a1 b) →1 a) ∩ a) = (aa)
5 anidm 111 . . . . 5 (aa) = a
64, 5ax-r2 36 . . . 4 (((a1 b) →1 a) ∩ a) = a
72, 62or 72 . . 3 (((a1 b) →1 a) ∪ (((a1 b) →1 a) ∩ a)) = (aa)
8 ax-a2 31 . . . 4 (aa) = (aa )
9 df-t 41 . . . . 5 1 = (aa )
109ax-r1 35 . . . 4 (aa ) = 1
118, 10ax-r2 36 . . 3 (aa) = 1
127, 11ax-r2 36 . 2 (((a1 b) →1 a) ∪ (((a1 b) →1 a) ∩ a)) = 1
131, 12ax-r2 36 1 (((a1 b) →1 a) →1 a) = 1
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   ∪ wo 6   ∩ wa 7  1wt 8   →1 wi1 12 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator