Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  negant5 GIF version

Theorem negant5 863
 Description: Negated antecedent identity.
Hypothesis
Ref Expression
negant.1 (a1 c) = (b1 c)
Assertion
Ref Expression
negant5 (a5 c) = (b5 c)

Proof of Theorem negant5
StepHypRef Expression
1 negant.1 . . . 4 (a1 c) = (b1 c)
21negant2 858 . . 3 (a2 c) = (b2 c)
31negant4 862 . . 3 (a4 c) = (b4 c)
42, 32an 79 . 2 ((a2 c) ∩ (a4 c)) = ((b2 c) ∩ (b4 c))
5 u24lem 770 . 2 ((a2 c) ∩ (a4 c)) = (a5 c)
6 u24lem 770 . 2 ((b2 c) ∩ (b4 c)) = (b5 c)
74, 5, 63tr2 64 1 (a5 c) = (b5 c)
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   ∩ wa 7   →1 wi1 12   →2 wi2 13   →4 wi4 15   →5 wi5 16 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-i3 46  df-i4 47  df-i5 48  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator