Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  negant4 GIF version

Theorem negant4 862
 Description: Negated antecedent identity.
Hypothesis
Ref Expression
negant.1 (a1 c) = (b1 c)
Assertion
Ref Expression
negant4 (a4 c) = (b4 c)

Proof of Theorem negant4
StepHypRef Expression
1 negant.1 . . . 4 (a1 c) = (b1 c)
21sac 835 . . 3 (a1 c) = (b1 c)
32negantlem10 861 . 2 (a4 c) ≤ (b4 c)
42ax-r1 35 . . 3 (b1 c) = (a1 c)
54negantlem10 861 . 2 (b4 c) ≤ (a4 c)
63, 5lebi 145 1 (a4 c) = (b4 c)
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   →1 wi1 12   →4 wi4 15 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i3 46  df-i4 47  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by:  negant5  863
 Copyright terms: Public domain W3C validator