![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > leran | GIF version |
Description: Add conjunct to right of both sides. |
Ref | Expression |
---|---|
le.1 | a ≤ b |
Ref | Expression |
---|---|
leran | (a ∩ c) ≤ (b ∩ c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandir 115 | . . . 4 ((a ∩ b) ∩ c) = ((a ∩ c) ∩ (b ∩ c)) | |
2 | 1 | ax-r1 35 | . . 3 ((a ∩ c) ∩ (b ∩ c)) = ((a ∩ b) ∩ c) |
3 | le.1 | . . . . 5 a ≤ b | |
4 | 3 | df2le2 136 | . . . 4 (a ∩ b) = a |
5 | 4 | ran 78 | . . 3 ((a ∩ b) ∩ c) = (a ∩ c) |
6 | 2, 5 | ax-r2 36 | . 2 ((a ∩ c) ∩ (b ∩ c)) = (a ∩ c) |
7 | 6 | df2le1 135 | 1 (a ∩ c) ≤ (b ∩ c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: lelan 167 le2an 169 i2or 344 i5lei4 350 k1-8a 355 3vth1 804 3vded21 817 3vded22 818 1oaiii 823 3vroa 831 eqtr4 834 sadm3 838 negantlem3 850 comanblem1 870 mh 879 gomaex4 900 oasr 926 oa3-u2lem 986 d4oa 996 oaliii 1001 oagen2b 1017 axoa4 1034 lem3.4.3 1076 lem4.6.7 1101 ml 1121 dp15lema 1152 dp15leme 1156 dp41lemh 1188 dp41leml 1191 xdp41 1196 xdp15 1197 xxdp41 1199 xxdp15 1200 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 |
Copyright terms: Public domain | W3C validator |