Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  i3orlem4 GIF version

Theorem i3orlem4 555
 Description: Lemma for Kalmbach implication OR builder.
Assertion
Ref Expression
i3orlem4 ((ac) ∩ (bc)) ≤ ((ac) →3 (bc))

Proof of Theorem i3orlem4
StepHypRef Expression
1 leo 158 . . 3 ((ac) ∩ (bc)) ≤ (((ac) ∩ (bc)) ∪ ((ac) ∩ (bc) ))
21ler 149 . 2 ((ac) ∩ (bc)) ≤ ((((ac) ∩ (bc)) ∪ ((ac) ∩ (bc) )) ∪ ((ac) ∩ ((ac) ∪ (bc))))
3 df-i3 46 . . 3 ((ac) →3 (bc)) = ((((ac) ∩ (bc)) ∪ ((ac) ∩ (bc) )) ∪ ((ac) ∩ ((ac) ∪ (bc))))
43ax-r1 35 . 2 ((((ac) ∩ (bc)) ∪ ((ac) ∩ (bc) )) ∪ ((ac) ∩ ((ac) ∪ (bc)))) = ((ac) →3 (bc))
52, 4lbtr 139 1 ((ac) ∩ (bc)) ≤ ((ac) →3 (bc))
 Colors of variables: term Syntax hints:   ≤ wle 2  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →3 wi3 14 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-i3 46  df-le1 130  df-le2 131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator