Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  dp35 GIF version

Theorem dp35 1178
 Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(5)
Hypotheses
Ref Expression
dp35.1 c0 = ((a1a2) ∩ (b1b2))
dp35.2 c1 = ((a0a2) ∩ (b0b2))
dp35.3 p0 = ((a1b1) ∩ (a2b2))
Assertion
Ref Expression
dp35 ((a0a1) ∩ ((b0 ∩ (a0p0)) ∪ b1)) ≤ ((c0c1) ∪ (b1 ∩ (a0a1)))

Proof of Theorem dp35
StepHypRef Expression
1 dp35.1 . 2 c0 = ((a1a2) ∩ (b1b2))
2 dp35.2 . 2 c1 = ((a0a2) ∩ (b0b2))
3 id 59 . 2 ((a0a1) ∩ (b0b1)) = ((a0a1) ∩ (b0b1))
4 dp35.3 . 2 p0 = ((a1b1) ∩ (a2b2))
5 id 59 . 2 (((a0b0) ∩ (a1b1)) ∩ (a2b2)) = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
61, 2, 3, 4, 5dp35lem0 1177 1 ((a0a1) ∩ ((b0 ∩ (a0p0)) ∪ b1)) ≤ ((c0c1) ∪ (b1 ∩ (a0a1)))
 Colors of variables: term Syntax hints:   = wb 1   ≤ wle 2   ∪ wo 6   ∩ wa 7 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120  ax-arg 1151 This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator